Marked and labelled Gushel-Mukai fourfolds

Laura Pertusi

Dipartimento di Matematica "F. Enriques" Università degli Studi di Milano

Joint work with Emma Brakkee (arXiv:2002.04248)

・ロト ・御ト ・ヨト ・ヨト

- 2

Hodge theory for Gushel-Mukai fourfolds;

- Associated K3 surface and main results;
- Opplication to Fourier-Mukai partners.

日本・モン・モン

- Hodge theory for Gushel-Mukai fourfolds;
- Associated K3 surface and main results;
- Application to Fourier-Mukai partners.

日本・モン・モン

- Hodge theory for Gushel-Mukai fourfolds;
- Associated K3 surface and main results;
- Application to Fourier-Mukai partners.

• 3 > 1

A¶ ▶

- - E - F

We work over $\mathbb{C}.$ Let V_5 be a 5-dimensional $\mathbb{C}\text{-vector space}.$ Consider:

- $Gr(2, V_5) \subset \mathbb{P}(\bigwedge^2 V_5) \cong \mathbb{P}^9$ via Plücker embedding;
- the cone over the Grassmannian $\operatorname{Gr}(2, V_5)$ with vertex $\nu := \mathbb{P}(\mathbb{C})$
 - $\mathsf{CGr}(2, V_5) \subset \mathbb{P}(\mathbb{C} \oplus \bigwedge^2 V_5) \cong \mathbb{P}^{10};$
- $\mathbb{P}(W) \cong \mathbb{P}^8 \subset \mathbb{P}(\mathbb{C} \oplus \bigwedge^2 V_5);$
- a quadric hypersurface $Q \subset \mathbb{P}(W)$.

Definition

A Gushel–Mukai (GM) fourfold is a smooth four-dimensional intersection

 $X = \mathsf{CGr}(2, V_5) \cap Q.$

We work over $\mathbb{C}.$ Let V_5 be a 5-dimensional $\mathbb{C}\text{-vector}$ space. Consider:

- $Gr(2, V_5) \subset \mathbb{P}(\bigwedge^2 V_5) \cong \mathbb{P}^9$ via Plücker embedding;
- the cone over the Grassmannian $Gr(2, V_5)$ with vertex $\nu := \mathbb{P}(\mathbb{C})$
 - $\operatorname{CGr}(2, V_5) \subset \mathbb{P}(\mathbb{C} \oplus \bigwedge^2 V_5) \cong \mathbb{P}^{10}$

•
$$\mathbb{P}(W) \cong \mathbb{P}^8 \subset \mathbb{P}(\mathbb{C} \oplus \bigwedge^2 V_5);$$

• a quadric hypersurface $Q \subset \mathbb{P}(W)$.

Definition

A Gushel–Mukai (GM) fourfold is a smooth four-dimensional intersection

 $X = \mathsf{CGr}(2, V_5) \cap Q.$

If $H \subset X$ is the hyperplane class, then $H^4 = 10$ and $K_X = -2H$. Thus X is a Fano fourfold.

We work over $\mathbb{C}.$ Let V_5 be a 5-dimensional $\mathbb{C}\text{-vector}$ space. Consider:

- $Gr(2, V_5) \subset \mathbb{P}(\bigwedge^2 V_5) \cong \mathbb{P}^9$ via Plücker embedding;
- the cone over the Grassmannian $Gr(2, V_5)$ with vertex $\nu := \mathbb{P}(\mathbb{C})$

$$\operatorname{CGr}(2, V_5) \subset \mathbb{P}(\mathbb{C} \oplus \bigwedge^2 V_5) \cong \mathbb{P}^{10};$$

- $\mathbb{P}(W) \cong \mathbb{P}^8 \subset \mathbb{P}(\mathbb{C} \oplus \bigwedge^2 V_5);$
- a quadric hypersurface $Q \subset \mathbb{P}(W)$.

Definition

A Gushel–Mukai (GM) fourfold is a smooth four-dimensional intersection

 $X = \operatorname{CGr}(2, V_5) \cap Q.$

We work over $\mathbb{C}.$ Let V_5 be a 5-dimensional $\mathbb{C}\text{-vector}$ space. Consider:

- $Gr(2, V_5) \subset \mathbb{P}(\bigwedge^2 V_5) \cong \mathbb{P}^9$ via Plücker embedding;
- the cone over the Grassmannian $Gr(2, V_5)$ with vertex $\nu := \mathbb{P}(\mathbb{C})$ $Cr(2, V_5) = \mathbb{P}(\mathbb{C} \oplus A^2 V_5) \simeq \mathbb{P}^{10}$

$$\operatorname{CGr}(2, V_5) \subset \mathbb{P}(\mathbb{C} \oplus \bigwedge^2 V_5) \cong \mathbb{P}^{10}$$

•
$$\mathbb{P}(W) \cong \mathbb{P}^8 \subset \mathbb{P}(\mathbb{C} \oplus \bigwedge^2 V_5);$$

• a quadric hypersurface $Q \subset \mathbb{P}(W)$.

Definition

A Gushel–Mukai (GM) fourfold is a smooth four-dimensional intersection

 $X = \operatorname{CGr}(2, V_5) \cap Q.$

If $H \subset X$ is the hyperplane class, then $H^4 = 10$ and $K_X = -2H$. Thus X is a Fano fourfold.

We work over $\mathbb{C}.$ Let V_5 be a 5-dimensional $\mathbb{C}\text{-vector}$ space. Consider:

- $Gr(2, V_5) \subset \mathbb{P}(\bigwedge^2 V_5) \cong \mathbb{P}^9$ via Plücker embedding;
- the cone over the Grassmannian $Gr(2, V_5)$ with vertex $\nu := \mathbb{P}(\mathbb{C})$ $CGr(2, V_5) \subset \mathbb{P}(\mathbb{C} \oplus \bigwedge^2 V_5) \cong \mathbb{P}^{10};$

•
$$\mathbb{P}(W) \cong \mathbb{P}^8 \subset \mathbb{P}(\mathbb{C} \oplus \bigwedge^2 V_5);$$

• a quadric hypersurface $Q \subset \mathbb{P}(W)$.

Definition

A Gushel–Mukai (GM) fourfold is a smooth four-dimensional intersection

$$X=\operatorname{CGr}(2,V_5)\cap Q.$$

We work over $\mathbb{C}.$ Let V_5 be a 5-dimensional $\mathbb{C}\text{-vector}$ space. Consider:

- $Gr(2, V_5) \subset \mathbb{P}(\bigwedge^2 V_5) \cong \mathbb{P}^9$ via Plücker embedding;
- the cone over the Grassmannian $Gr(2, V_5)$ with vertex $\nu := \mathbb{P}(\mathbb{C})$ $CGr(2, V_5) \subset \mathbb{P}(\mathbb{C} \oplus \bigwedge^2 V_5) \cong \mathbb{P}^{10};$

•
$$\mathbb{P}(W) \cong \mathbb{P}^8 \subset \mathbb{P}(\mathbb{C} \oplus \bigwedge^2 V_5);$$

• a quadric hypersurface $Q \subset \mathbb{P}(W)$.

Definition

A Gushel–Mukai (GM) fourfold is a smooth four-dimensional intersection

$$X = \mathsf{CGr}(2, V_5) \cap Q.$$

We work over $\mathbb{C}.$ Let V_5 be a 5-dimensional $\mathbb{C}\text{-vector}$ space. Consider:

- $Gr(2, V_5) \subset \mathbb{P}(\bigwedge^2 V_5) \cong \mathbb{P}^9$ via Plücker embedding;
- the cone over the Grassmannian $Gr(2, V_5)$ with vertex $\nu := \mathbb{P}(\mathbb{C})$ $CGr(2, V_5) \subset \mathbb{P}(\mathbb{C} \oplus \bigwedge^2 V_5) \cong \mathbb{P}^{10};$

•
$$\mathbb{P}(W) \cong \mathbb{P}^8 \subset \mathbb{P}(\mathbb{C} \oplus \bigwedge^2 V_5);$$

• a quadric hypersurface $Q \subset \mathbb{P}(W)$.

Definition

A Gushel–Mukai (GM) fourfold is a smooth four-dimensional intersection

$$X = \mathsf{CGr}(2, V_5) \cap Q.$$

Motivations

GM fourfolds were firstly studied by:

- Debarre, Iliev, Manivel and Debarre, Kuznetsov from the Hodge-theoretical view point;
- Kuznetsov, Perry from the derived category view point.

Leitmotiv

Analogy with cubic fourfolds.

GM fourfolds are "related" to K3 surfaces and give rise to a rich hyperkähler geometry.

Our goal:

Explain better the connection with K3 surfaces on the level of period domains and moduli stacks/spaces \rightsquigarrow arises a difference with cubic fourfolds.

A (1) > A (2) > A (2) >

Motivations

GM fourfolds were firstly studied by:

- Debarre, Iliev, Manivel and Debarre, Kuznetsov from the Hodge-theoretical view point;
- Kuznetsov, Perry from the derived category view point.

Leitmotiv

Analogy with cubic fourfolds.

GM fourfolds are "related" to K3 surfaces and give rise to a rich hyperkähler geometry.

Our goal:

Explain better the connection with K3 surfaces on the level of period domains and moduli stacks/spaces \rightsquigarrow arises a difference with cubic fourfolds.

Motivations

GM fourfolds were firstly studied by:

- Debarre, Iliev, Manivel and Debarre, Kuznetsov from the Hodge-theoretical view point;
- Kuznetsov, Perry from the derived category view point.

Leitmotiv

Analogy with cubic fourfolds.

GM fourfolds are "related" to K3 surfaces and give rise to a rich hyperkähler geometry.

Our goal:

Explain better the connection with K3 surfaces on the level of period domains and moduli stacks/spaces \rightsquigarrow arises a difference with cubic fourfolds.

→ 同 ▶ → 臣 ▶ → 臣 ▶

Interlude on lattices

Given a lattice L,

• Disc $L := L^{\vee}/L$ is the discriminant group of L;

- the discriminant of *L* is the order of Disc *L*;
- O
 ^(L) := Ker(O(L) → O(Disc L)) is the stable orthogonal group of L;
- given $m \neq 0 \in \mathbb{Z}$, L(m) is the lattice L with the intersection form multiplied by m.

Examples

- $l_1 = (\mathbb{Z}, (1));$
- $A_1 = I_1(2);$
- $U = \left(\mathbb{Z}^{\oplus 2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right)$ is the hyperbolic plane;
- E_8 is the unique even unimodular lattice of signature (8,0).

イロト イヨト イヨト イヨト

- Disc $L := L^{\vee}/L$ is the discriminant group of L;
- the discriminant of *L* is the order of Disc *L*;
- O
 ^(L) := Ker(O(L) → O(Disc L)) is the stable orthogonal group of L;
- given $m \neq 0 \in \mathbb{Z}$, L(m) is the lattice L with the intersection form multiplied by m.

Examples

- $I_1 = (\mathbb{Z}, (1));$
- $A_1 = I_1(2);$
- $U = \left(\mathbb{Z}^{\oplus 2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right)$ is the hyperbolic plane;
- E_8 is the unique even unimodular lattice of signature (8,0).

イロト イヨト イヨト イヨト

- Disc $L := L^{\vee}/L$ is the discriminant group of L;
- the discriminant of *L* is the order of Disc *L*;
- O
 ^(L) := Ker(O(L) → O(Disc L)) is the stable orthogonal group of L;
- given $m \neq 0 \in \mathbb{Z}$, L(m) is the lattice L with the intersection form multiplied by m.

Examples

- $I_1 = (\mathbb{Z}, (1));$
- $A_1 = I_1(2);$
- $U = \left(\mathbb{Z}^{\oplus 2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right)$ is the hyperbolic plane;
- E_8 is the unique even unimodular lattice of signature (8,0).

- Disc $L := L^{\vee}/L$ is the discriminant group of L;
- the discriminant of *L* is the order of Disc *L*;
- O
 ^(L) := Ker(O(L) → O(Disc L)) is the stable orthogonal group of L;
- given $m \neq 0 \in \mathbb{Z}$, L(m) is the lattice L with the intersection form multiplied by m.

Examples

- $I_1 = (\mathbb{Z}, (1));$
- $A_1 = I_1(2);$
- $U = \left(\mathbb{Z}^{\oplus 2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right)$ is the hyperbolic plane;
- E_8 is the unique even unimodular lattice of signature (8,0).

- Disc $L := L^{\vee}/L$ is the discriminant group of L;
- the discriminant of *L* is the order of Disc *L*;
- O
 ^(L) := Ker(O(L) → O(Disc L)) is the stable orthogonal group of L;
- given $m \neq 0 \in \mathbb{Z}$, L(m) is the lattice L with the intersection form multiplied by m.

Examples

- $I_1 = (\mathbb{Z}, (1));$
- $A_1 = I_1(2)$;
- $U = \left(\mathbb{Z}^{\oplus 2}, \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}
 ight)
 ight)$ is the hyperbolic plane;
- E_8 is the unique even unimodular lattice of signature (8,0).

イロト イポト イヨト イヨト 二日

- Disc $L := L^{\vee}/L$ is the discriminant group of L;
- the discriminant of *L* is the order of Disc *L*;
- O
 ^(L) := Ker(O(L) → O(Disc L)) is the stable orthogonal group of L;
- given $m \neq 0 \in \mathbb{Z}$, L(m) is the lattice L with the intersection form multiplied by m.

Examples

- $I_1 = (\mathbb{Z}, (1));$
- $A_1 = I_1(2);$
- $U = \left(\mathbb{Z}^{\oplus 2}, \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}\right)\right)$ is the hyperbolic plane;
- *E*₈ is the unique even unimodular lattice of signature (8,0).

- Disc $L := L^{\vee}/L$ is the discriminant group of L;
- the discriminant of *L* is the order of Disc *L*;
- O
 ^(L) := Ker(O(L) → O(Disc L)) is the stable orthogonal group of L;
- given $m \neq 0 \in \mathbb{Z}$, L(m) is the lattice L with the intersection form multiplied by m.

Examples

- $I_1 = (\mathbb{Z}, (1));$
- $A_1 = I_1(2);$
- $U = \left(\mathbb{Z}^{\oplus 2}, \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right) \right)$ is the hyperbolic plane;
- *E*₈ is the unique even unimodular lattice of signature (8,0).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

- Disc $L := L^{\vee}/L$ is the discriminant group of L;
- the discriminant of *L* is the order of Disc *L*;
- O
 ^(L) := Ker(O(L) → O(Disc L)) is the stable orthogonal group of L;
- given $m \neq 0 \in \mathbb{Z}$, L(m) is the lattice L with the intersection form multiplied by m.

Examples

- $I_1 = (\mathbb{Z}, (1));$
- $A_1 = I_1(2);$
- $U = \left(\mathbb{Z}^{\oplus 2}, \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right) \right)$ is the hyperbolic plane;
- E_8 is the unique even unimodular lattice of signature (8,0).

イロト イポト イヨト イヨト 二日

Hodge diamond of X (Iliev, Manivel):

Let $\gamma_X : X \to Gr(2, V_5)$ be the linear projection from the vertex. <u>Remark</u>: $\gamma_X^* : H^4(Gr(2, V_5), \mathbb{Z}) = \langle \sigma_1^2, \sigma_{1,1} \rangle \hookrightarrow H^4(X, \mathbb{Z}).$

Definition

The vanishing lattice of X is the sublattice $H^4(X,\mathbb{Z})_{\text{van}} := \{ x \in H^4(X,\mathbb{Z}) : x \cdot \gamma_X^*(H^4(\text{Gr}(2,V_5),\mathbb{Z})) = 0 \}.$

- $H^4(X,\mathbb{Z})\cong I^{\oplus 22}\oplus I(-1)^{\oplus 2}=:\Lambda;$
- $H^4(X,\mathbb{Z})_{\operatorname{van}}\cong E_8^{\oplus 2}\oplus U^{\oplus 2}\oplus A_1^{\oplus 2}=:\Lambda_{00};$
 - $\gamma_X^*(H^4(\mathrm{Gr}(2,V_5),\mathbb{Z})\cong\Lambda_{00}^\perp\subset\Lambda \text{ and }\Lambda_{00}^\perp=A_1^{\oplus 2}=\langle\lambda_1,\lambda_2\rangle.$

Hodge diamond of X (lliev, Manivel):

Let $\gamma_X : X \to Gr(2, V_5)$ be the linear projection from the vertex. <u>Remark</u>: $\gamma_X^* : H^4(Gr(2, V_5), \mathbb{Z}) = \langle \sigma_1^2, \sigma_{1,1} \rangle \hookrightarrow H^4(X, \mathbb{Z}).$

Definition

The vanishing lattice of X is the sublattice $H^{4}(X,\mathbb{Z})_{\text{van}} := \{ x \in H^{4}(X,\mathbb{Z}) : x \cdot \gamma_{X}^{*}(H^{4}(\text{Gr}(2,V_{5}),\mathbb{Z})) = 0 \}.$

- $H^4(X,\mathbb{Z})\cong I^{\oplus 22}\oplus I(-1)^{\oplus 2}=:\Lambda;$
- $H^4(X,\mathbb{Z})_{\operatorname{van}}\cong E_8^{\oplus 2}\oplus U^{\oplus 2}\oplus A_1^{\oplus 2}=:\Lambda_{00};$
 - $\gamma_X^*(H^4(\mathrm{Gr}(2,V_5),\mathbb{Z})\cong\Lambda_{00}^\perp\subset\Lambda \text{ and }\Lambda_{00}^\perp=\Lambda_{10}^{\oplus2}=\langle\lambda_1,\lambda_2\rangle.$

Hodge diamond of X (lliev, Manivel):

Let $\gamma_X : X \to Gr(2, V_5)$ be the linear projection from the vertex. <u>Remark</u>: $\gamma_X^* : H^4(Gr(2, V_5), \mathbb{Z}) = \langle \sigma_1^2, \sigma_{1,1} \rangle \hookrightarrow H^4(X, \mathbb{Z}).$

Definition

The vanishing lattice of X is the sublattice $H^{4}(X,\mathbb{Z})_{\text{van}} := \{ x \in H^{4}(X,\mathbb{Z}) : x \cdot \gamma_{X}^{*}(H^{4}(\text{Gr}(2,V_{5}),\mathbb{Z})) = 0 \}.$

- $H^4(X,\mathbb{Z})\cong I^{\oplus 22}\oplus I(-1)^{\oplus 2}=:\Lambda;$
- $H^4(X,\mathbb{Z})_{\text{van}}\cong E_8^{\oplus 2}\oplus U^{\oplus 2}\oplus A_1^{\oplus 2}=:\Lambda_{00};$
 - $\gamma_{\chi}^{*}(H^{4}(\mathrm{Gr}(2, V_{5}), \mathbb{Z}) \cong \Lambda_{00}^{\perp} \subset \Lambda \text{ and } \Lambda_{00}^{\perp} = A_{10}^{\oplus 2} = \langle \lambda_{1}, \lambda_{2} \rangle.$

Hodge diamond of X (lliev, Manivel):

Let $\gamma_X : X \to Gr(2, V_5)$ be the linear projection from the vertex. <u>Remark</u>: $\gamma_X^* : H^4(Gr(2, V_5), \mathbb{Z}) = \langle \sigma_1^2, \sigma_{1,1} \rangle \hookrightarrow H^4(X, \mathbb{Z}).$

Definition

The vanishing lattice of X is the sublattice $H^{4}(X,\mathbb{Z})_{\text{van}} := \{ x \in H^{4}(X,\mathbb{Z}) : x \cdot \gamma_{X}^{*}(H^{4}(\text{Gr}(2,V_{5}),\mathbb{Z})) = 0 \}.$

•
$$H^4(X,\mathbb{Z})\cong I^{\oplus 22}\oplus I(-1)^{\oplus 2}=:\Lambda;$$

• $H^4(X,\mathbb{Z})_{\operatorname{van}}\cong E_8^{\oplus 2}\oplus U^{\oplus 2}\oplus A_1^{\oplus 2}=:\Lambda_{00};$

 $\gamma_X^*(H^4(\mathrm{Gr}(2,V_5),\mathbb{Z})\cong \Lambda_{00}^{\perp}\subset \Lambda \text{ and } \Lambda_{00}^{\perp}=A_1^{\oplus 2}=\langle\lambda_1,\lambda_2\rangle.$

Hodge diamond of X (lliev, Manivel):

Let $\gamma_X : X \to Gr(2, V_5)$ be the linear projection from the vertex. <u>Remark</u>: $\gamma_X^* : H^4(Gr(2, V_5), \mathbb{Z}) = \langle \sigma_1^2, \sigma_{1,1} \rangle \hookrightarrow H^4(X, \mathbb{Z}).$

Definition

The vanishing lattice of X is the sublattice $H^{4}(X,\mathbb{Z})_{\text{van}} := \{ x \in H^{4}(X,\mathbb{Z}) : x \cdot \gamma_{X}^{*}(H^{4}(\text{Gr}(2,V_{5}),\mathbb{Z})) = 0 \}.$

•
$$H^4(X,\mathbb{Z}) \cong I^{\oplus 22} \oplus I(-1)^{\oplus 2} =: \Lambda;$$

• $H^4(X,\mathbb{Z})_{\text{van}} \cong E_8^{\oplus 2} \oplus U^{\oplus 2} \oplus A_1^{\oplus 2} =: \Lambda_{00};$

• $\gamma_X^*(H^4(\operatorname{Gr}(2,V_5),\mathbb{Z})\cong \Lambda_{00}^{\perp}\subset \Lambda$ and $\Lambda_{00}^{\perp}=A_1^{\oplus 2}=\langle\lambda_1,\lambda_2\rangle$.

Hodge diamond of X (lliev, Manivel):

Let $\gamma_X : X \to Gr(2, V_5)$ be the linear projection from the vertex. <u>Remark</u>: $\gamma_X^* : H^4(Gr(2, V_5), \mathbb{Z}) = \langle \sigma_1^2, \sigma_{1,1} \rangle \hookrightarrow H^4(X, \mathbb{Z}).$

Definition

The vanishing lattice of X is the sublattice $H^{4}(X,\mathbb{Z})_{\text{van}} := \{ x \in H^{4}(X,\mathbb{Z}) : x \cdot \gamma_{X}^{*}(H^{4}(\text{Gr}(2,V_{5}),\mathbb{Z})) = 0 \}.$

•
$$H^4(X,\mathbb{Z}) \cong I^{\oplus 22} \oplus I(-1)^{\oplus 2} =: \Lambda;$$

• $H^4(X,\mathbb{Z})_{\text{van}} \cong E_8^{\oplus 2} \oplus U^{\oplus 2} \oplus A_1^{\oplus 2} =: \Lambda_{00};$
• $\gamma_X^*(H^4(\text{Gr}(2,V_5),\mathbb{Z}) \cong \Lambda_{00}^{\perp} \subset \Lambda \text{ and } \Lambda_{00}^{\perp} = A_1^{\oplus 2} = \langle \lambda_1, \lambda_2 \rangle.$

The period domain of GM fourfolds is $\Omega(\Lambda_{00}) := \{ w \in \mathbb{P}(\Lambda_{00} \otimes \mathbb{C}) : w \cdot w = 0, w \cdot \bar{w} < 0 \}.$ $\widetilde{O}(\Lambda_{00}) \text{ acts properly discontinuously on } \Omega(\Lambda_{00})$ $\longrightarrow \qquad \mathcal{D} := \Omega(\Lambda_{00}) / \widetilde{O}(\Lambda_{00})$ is an irreducible quasi-projective variety of dimension 20. The period map is

 $p: \mathcal{M}_4 \to \mathcal{D}, \quad [X] \mapsto [\mathsf{H}^{3,1}(X)]$

where \mathcal{M}_4 is the moduli stack of GM fourfolds.

Proposition (Debarre, Iliev, Manivel)

p is dominant as a map of stacks with smooth 4-dimensional fibers.

First difference with cubic fourfolds, whose period map is injective! Torelli Theorem does not hold for GM fourfolds.

イロト イヨト イヨト ・

The period domain of GM fourfolds is $\Omega(\Lambda_{00}) := \{ w \in \mathbb{P}(\Lambda_{00} \otimes \mathbb{C}) : w \cdot w = 0, w \cdot \bar{w} < 0 \}.$ $\widetilde{O}(\Lambda_{00}) \text{ acts properly discontinuously on } \Omega(\Lambda_{00})$ $\rightsquigarrow \qquad \mathcal{D} := \Omega(\Lambda_{00}) / \widetilde{O}(\Lambda_{00})$ is an irreducible quasi-projective variety of dimension 20. The period map is

 $p: \mathcal{M}_4 \to \mathcal{D}, \quad [X] \mapsto [\mathsf{H}^{3,1}(X)]$

where \mathcal{M}_4 is the moduli stack of GM fourfolds.

Proposition (Debarre, Iliev, Manivel)

p is dominant as a map of stacks with smooth 4-dimensional fibers.

First difference with cubic fourfolds, whose period map is injective! Torelli Theorem does not hold for GM fourfolds.

・ロン ・日と ・ヨン

The period domain of GM fourfolds is $\Omega(\Lambda_{00}) := \{ w \in \mathbb{P}(\Lambda_{00} \otimes \mathbb{C}) : w \cdot w = 0, w \cdot \bar{w} < 0 \}.$ $\widetilde{O}(\Lambda_{00}) \text{ acts properly discontinuously on } \Omega(\Lambda_{00})$ $\rightsquigarrow \qquad \mathcal{D} := \Omega(\Lambda_{00}) / \widetilde{O}(\Lambda_{00})$ is an irreducible quasi-projective variety of dimension 20. The period map is

 $p \colon \mathcal{M}_4 \to \mathcal{D}, \quad [X] \mapsto [\mathsf{H}^{3,1}(X)]$

where \mathcal{M}_4 is the moduli stack of GM fourfolds.

Proposition (Debarre, Iliev, Manivel)

p is dominant as a map of stacks with smooth 4-dimensional fibers.

First difference with cubic fourfolds, whose period map is injective! Torelli Theorem does not hold for GM fourfolds.

イロト イヨト イヨト ・

The period domain of GM fourfolds is $\Omega(\Lambda_{00}) := \{ w \in \mathbb{P}(\Lambda_{00} \otimes \mathbb{C}) : w \cdot w = 0, w \cdot \bar{w} < 0 \}.$ $\widetilde{O}(\Lambda_{00}) \text{ acts properly discontinuously on } \Omega(\Lambda_{00})$ $\rightsquigarrow \qquad \mathcal{D} := \Omega(\Lambda_{00}) / \widetilde{O}(\Lambda_{00})$ is an irreducible quasi-projective variety of dimension 20. The period map is

$$p: \mathcal{M}_4 \to \mathcal{D}, \quad [X] \mapsto [\mathsf{H}^{3,1}(X)]$$

where \mathcal{M}_4 is the moduli stack of GM fourfolds.

Proposition (Debarre, Iliev, Manivel)

p is dominant as a map of stacks with smooth 4-dimensional fibers.

First difference with cubic fourfolds, whose period map is injective! Torelli Theorem does not hold for GM fourfolds.

A very general GM fourfold X satisfies $\operatorname{rk} H^{2,2}(X, \mathbb{Z}) = 2$.

Definition

A GM fourfold X is Hodge-special if $rkH^{2,2}(X,\mathbb{Z}) \ge 3$.

Period points of Hodge-special GM fourfolds lie in codimension-1 Noether–Lefschetz loci in \mathcal{D} :

For a primitive sublattice L_d ⊂ Λ of rank 3 and discriminant d containing λ₁, λ₂, define

$$\Omega(L_d^{\perp}) := \mathbb{P}(L_d^{\perp} \otimes \mathbb{C}) \cap \Omega(\Lambda_{00})$$

where L_d^{\perp} is the orthogonal complement of L_d in Λ . Let

$\mathcal{D}_{L_d} \subset \mathcal{D}$

be the image of $\Omega(L^{\perp}_{d})$ under the map $\Omega(\Lambda_{00}) \to \mathcal{D}$. The period of any Hodge-special GM fourfold lies in $\mathcal{D}_{L_{d}}$ for some L_{d} .

A very general GM fourfold X satisfies $\operatorname{rk} H^{2,2}(X, \mathbb{Z}) = 2$.

Definition

A GM fourfold X is Hodge-special if $\operatorname{rk} H^{2,2}(X,\mathbb{Z}) \geq 3$.

Period points of Hodge-special GM fourfolds lie in codimension-1 Noether–Lefschetz loci in \mathcal{D} :

For a primitive sublattice L_d ⊂ Λ of rank 3 and discriminant d containing λ₁, λ₂, define

$$\Omega(L_d^{\perp}) := \mathbb{P}(L_d^{\perp} \otimes \mathbb{C}) \cap \Omega(\Lambda_{00})$$

where L_d^{\perp} is the orthogonal complement of L_d in Λ . Let

$\mathcal{D}_{L_d} \subset \mathcal{D}$

be the image of $\Omega(L_d^{\perp})$ under the map $\Omega(\Lambda_{00}) \to \mathcal{D}$. The period of any Hodge-special GM fourfold lies in \mathcal{D}_{L_d} for some L_d .

A very general GM fourfold X satisfies $\operatorname{rk} H^{2,2}(X, \mathbb{Z}) = 2$.

Definition

A GM fourfold X is Hodge-special if $\operatorname{rk} H^{2,2}(X,\mathbb{Z}) \geq 3$.

Period points of Hodge-special GM fourfolds lie in codimension-1 Noether–Lefschetz loci in \mathcal{D} :

For a primitive sublattice L_d ⊂ Λ of rank 3 and discriminant d containing λ₁, λ₂, define

$$\Omega(L_d^{\perp}) := \mathbb{P}(L_d^{\perp} \otimes \mathbb{C}) \cap \Omega(\Lambda_{00})$$

where L_d^{\perp} is the orthogonal complement of L_d in Λ . Let

$\mathcal{D}_{L_d} \subset \mathcal{D}$

be the image of $\Omega(L_d^{\perp})$ under the map $\Omega(\Lambda_{00}) \to \mathcal{D}$. The period of any Hodge-special GM fourfold lies in \mathcal{D}_{L_d} for some L_d .

A very general GM fourfold X satisfies $\operatorname{rk} H^{2,2}(X, \mathbb{Z}) = 2$.

Definition

A GM fourfold X is Hodge-special if $\operatorname{rk} H^{2,2}(X,\mathbb{Z}) \geq 3$.

Period points of Hodge-special GM fourfolds lie in codimension-1 Noether–Lefschetz loci in D:

• For a primitive sublattice $L_d \subset \Lambda$ of rank 3 and discriminant d containing λ_1, λ_2 , define

$$\Omega(L_d^{\perp}) := \mathbb{P}(L_d^{\perp} \otimes \mathbb{C}) \cap \Omega(\Lambda_{00})$$

where L_d^{\perp} is the orthogonal complement of L_d in Λ . Let

be the image of $\Omega(L_d^{\perp})$ under the map $\Omega(\Lambda_{00}) \to \mathcal{D}$. The period of any Hodge-special GM fourfold lies in \mathcal{D}_{L_d} for some L_d .

Special GM fourfolds

A very general GM fourfold X satisfies $\operatorname{rk} H^{2,2}(X, \mathbb{Z}) = 2$.

Definition

A GM fourfold X is Hodge-special if $\operatorname{rk} H^{2,2}(X,\mathbb{Z}) \geq 3$.

Period points of Hodge-special GM fourfolds lie in codimension-1 Noether–Lefschetz loci in D:

For a primitive sublattice L_d ⊂ Λ of rank 3 and discriminant d containing λ₁, λ₂, define

$$\Omega(L_d^{\perp}) := \mathbb{P}(L_d^{\perp} \otimes \mathbb{C}) \cap \Omega(\Lambda_{00})$$

where L_d^{\perp} is the orthogonal complement of L_d in Λ . • Let

$$\mathcal{D}_{L_d} \subset \mathcal{D}$$

be the image of $\Omega(L_d^{\perp})$ under the map $\Omega(\Lambda_{00}) \to \mathcal{D}$.

The period of any Hodge-special GM fourfold lies in \mathcal{D}_{L_d} for some

- (日本) - (1)

Special GM fourfolds

A very general GM fourfold X satisfies $\operatorname{rk} H^{2,2}(X, \mathbb{Z}) = 2$.

Definition

A GM fourfold X is Hodge-special if $\operatorname{rk} H^{2,2}(X,\mathbb{Z}) \geq 3$.

Period points of Hodge-special GM fourfolds lie in codimension-1 Noether–Lefschetz loci in D:

For a primitive sublattice L_d ⊂ Λ of rank 3 and discriminant d containing λ₁, λ₂, define

$$\Omega(L_d^{\perp}) := \mathbb{P}(L_d^{\perp} \otimes \mathbb{C}) \cap \Omega(\Lambda_{00})$$

where L_d^{\perp} is the orthogonal complement of L_d in Λ . • Let

$$\mathcal{D}_{L_d} \subset \mathcal{D}$$

be the image of $\Omega(L_d^{\perp})$ under the map $\Omega(\Lambda_{00}) \to \mathcal{D}$. The period of any Hodge-special GM fourfold lies in \mathcal{D}_{L_d} for some L_d .

Properties (Debarre, Iliev, Manivel)

• $\mathcal{D}_{L_d} \neq \emptyset \Leftrightarrow d \equiv 0, 2, 4 \pmod{8}$.

• Up to the action of $O(\Lambda_{00})$, $L_d \cong$

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2k \end{pmatrix} \quad \text{if } d = 8k,$$

$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2k \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2k \end{pmatrix} \quad \text{if } d = 2 + 8k,$$

$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2k \end{pmatrix} \quad \text{if } d = 4 + 8k.$$

• There exists an involution $r \in O(\Lambda_{00})$ which is not in $\tilde{O}(\Lambda_{00})$, such that $r(\lambda_1) = \lambda_2$, exchanging the two embeddings of L_d in Λ .

Properties (Debarre, Iliev, Manivel)

•
$$\mathcal{D}_{L_d} \neq \emptyset \Leftrightarrow d \equiv 0, 2, 4 \pmod{8}.$$

• Up to the action of $\widetilde{O}(\Lambda_{00}), L_d \cong$
 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2k \end{pmatrix}$ if $d = 8k$,
 $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2k \end{pmatrix}$ or $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2k \end{pmatrix}$ if $d = 2 + 8k$,
 $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2k \end{pmatrix}$ if $d = 4 + 8k$.

Properties (Debarre, Iliev, Manivel)

•

$$\begin{aligned} \mathcal{D}_{L_d} \neq \emptyset \Leftrightarrow d \equiv 0, 2, 4 \pmod{8}. \\ \text{Up to the action of } \widetilde{O}(\Lambda_{00}), \ L_d \cong \\ & \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2k \end{pmatrix} \quad \text{if } d = 8k, \\ & \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2k \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2k \end{pmatrix} \quad \text{if } d = 2 + 8k, \\ & \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2k \end{pmatrix} \quad \text{if } d = 4 + 8k. \end{aligned}$$

• There exists an involution $r \in O(\Lambda_{00})$ which is not in $\widetilde{O}(\Lambda_{00})$, such that $r(\lambda_1) = \lambda_2$, exchanging the two embeddings of L_d in Λ .

Summary

Periods of Hodge-special GM fourfolds are contained in the union of

- irreducible hypersurfaces $\mathcal{D}_d \subset \mathcal{D}$ for all $d \equiv 0 \mod 4$;
- the unions D_d := D'_d ∪ D''_d of irreducible hypersurfaces for all d ≡ 2 mod 8 (second difference with cubic fourfolds).

We say <u>X</u> has discriminant <u>d</u> if $p(X) \in \mathcal{D}_d$.

Theorem (Debarre, Iliev, Manivel)

 $\mathcal{D}_{L_d} \cap Im(p)$ for d > 8.

The moduli stack of GM fourfolds of discriminant d is

$$\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d.$$

(4月) (4日) (4日)

Summary

Periods of Hodge-special GM fourfolds are contained in the union of

- irreducible hypersurfaces $\mathcal{D}_d \subset \mathcal{D}$ for all $d \equiv 0 \mod 4$;
- the unions D_d := D'_d ∪ D''_d of irreducible hypersurfaces for all d ≡ 2 mod 8 (second difference with cubic fourfolds).

We say <u>X has discriminant d</u> if $p(X) \in \mathcal{D}_d$.

Theorem (Debarre, Iliev, Manivel)

 $\mathcal{D}_{L_d} \cap Im(p)$ for d > 8.

The moduli stack of GM fourfolds of discriminant d is

$$\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d.$$

→ 同 ▶ → 臣 ▶ → 臣 ▶

Summary

Periods of Hodge-special GM fourfolds are contained in the union of

- irreducible hypersurfaces $\mathcal{D}_d \subset \mathcal{D}$ for all $d \equiv 0 \mod 4$;
- the unions D_d := D'_d ∪ D''_d of irreducible hypersurfaces for all d ≡ 2 mod 8 (second difference with cubic fourfolds).

We say <u>X has discriminant d</u> if $p(X) \in \mathcal{D}_d$.

Theorem (Debarre, Iliev, Manivel) $\mathcal{D}_{L_d} \cap Im(p)$ for d > 8.

The moduli stack of GM fourfolds of discriminant d is

$$\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d.$$

→ 同 ▶ → 目 ▶ → 目 ▶

Summary

Periods of Hodge-special GM fourfolds are contained in the union of

- irreducible hypersurfaces $\mathcal{D}_d \subset \mathcal{D}$ for all $d \equiv 0 \mod 4$;
- the unions D_d := D'_d ∪ D''_d of irreducible hypersurfaces for all d ≡ 2 mod 8 (second difference with cubic fourfolds).

We say <u>X has discriminant d</u> if $p(X) \in \mathcal{D}_d$.

Theorem (Debarre, Iliev, Manivel) $\mathcal{D}_{L_d} \cap Im(p)$ for d > 8.

The moduli stack of GM fourfolds of discriminant d is

$$\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (Debarre, Iliev, Manivel)

 $X \in \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d$ has a Hodge-associated degree-*d* polarized K3 surface (S, I) if there is a Hodge isometry $L_d^{\perp} \cong H^2(S, \mathbb{Z})_{\text{prim}}(-1)$.

 $\Leftrightarrow d \equiv 2,4 \mod 8$ and $p \nmid d$ for every prime $p \equiv 3 \mod 4$. (**)

Motivation:

Conjecture (Players of GM fourfolds)

X is rational if and only if $X \in \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d$ for *d* satisfying (**).

Known examples of rational GM fourfolds are in

- $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}'_{10}$, $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}''_{10}$ (Debarre, Iliev, Manivel);
- $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_{20}$ (Hoff, Staglianò in 2019);
- $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_{26}''$ (Staglianò in 2020).

Definition (Debarre, Iliev, Manivel)

 $X \in \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d$ has a Hodge-associated degree-*d* polarized K3 surface (S, I) if there is a Hodge isometry $L_d^{\perp} \cong H^2(S, \mathbb{Z})_{\text{prim}}(-1)$.

 $\Leftrightarrow d \equiv 2,4 \mod 8$ and $p \nmid d$ for every prime $p \equiv 3 \mod 4$. (**)

Motivation:

Conjecture (Players of GM fourfolds)

X is rational if and only if $X \in \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d$ for d satisfying (**).

Known examples of rational GM fourfolds are in

- $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}'_{10}$, $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}''_{10}$ (Debarre, Iliev, Manivel);
- $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_{20}$ (Hoff, Staglianò in 2019);
- $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_{26}''$ (Staglianò in 2020).

Definition (Debarre, Iliev, Manivel)

 $X \in \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d$ has a Hodge-associated degree-*d* polarized K3 surface (S, I) if there is a Hodge isometry $L_d^{\perp} \cong H^2(S, \mathbb{Z})_{\text{prim}}(-1)$.

 $\Leftrightarrow d \equiv 2,4 \mod 8$ and $p \nmid d$ for every prime $p \equiv 3 \mod 4$. (**)

Motivation:

Conjecture (Players of GM fourfolds)

X is rational if and only if $X \in \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d$ for d satisfying (**).

Known examples of rational GM fourfolds are in

- $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}'_{10}$, $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}''_{10}$ (Debarre, Iliev, Manivel);
- $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_{20}$ (Hoff, Staglianò in 2019);
- $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_{26}''$ (Staglianò in 2020).

If d satisfies (**),

Question: what happens on the level of quotient domains and stacks?

- $\mathsf{H}^2(S,\mathbb{Z})_{\mathsf{pr}}\cong E_8(-1)^{\oplus 2}\oplus U^{\oplus 2}\oplus I_1(-d)=:\Lambda_d;$
- Ω(Λ_d)/Õ(Λ_d) is the moduli space of quasi-polarized degree-d K3 surfaces.

Question: \mathcal{D}_d versus $\Omega(\Lambda_d)/\widetilde{O}(\Lambda_d)$?

d satisfies (**) $\Leftrightarrow L_d^{\perp} \cong \Lambda_d(-1)$; in this case $\widetilde{O}(L_d^{\perp}) \cong \widetilde{O}(\Lambda_d(-1))$.

Tool: notions of *marked and labelled* GM fourfolds. Introduced by Hassett for cubic fourfolds.

If d satisfies (**), Question: what happens on the level of quotient domains and stacks?

- $\mathsf{H}^2(S,\mathbb{Z})_{\mathsf{pr}}\cong E_8(-1)^{\oplus 2}\oplus U^{\oplus 2}\oplus I_1(-d)=:\Lambda_d;$
- Ω(Λ_d)/Õ(Λ_d) is the moduli space of quasi-polarized degree-d K3 surfaces.

Question: \mathcal{D}_d versus $\Omega(\Lambda_d)/\tilde{O}(\Lambda_d)$?

d satisfies (**) $\Leftrightarrow L_d^{\perp} \cong \Lambda_d(-1)$; in this case $\widetilde{O}(L_d^{\perp}) \cong \widetilde{O}(\Lambda_d(-1))$.

Tool: notions of *marked and labelled* GM fourfolds. Introduced by Hassett for cubic fourfolds.

If d satisfies (**), Question: what happens on the level of quotient domains and stacks?

- $H^2(S,\mathbb{Z})_{pr} \cong E_8(-1)^{\oplus 2} \oplus U^{\oplus 2} \oplus I_1(-d) =: \Lambda_d;$
- Ω(Λ_d)/Õ(Λ_d) is the moduli space of quasi-polarized degree-d K3 surfaces.

Question: \mathcal{D}_d versus $\Omega(\Lambda_d)/\widetilde{O}(\Lambda_d)$?

d satisfies (**) $\Leftrightarrow L_d^{\perp} \cong \Lambda_d(-1)$; in this case $\widetilde{O}(L_d^{\perp}) \cong \widetilde{O}(\Lambda_d(-1))$.

Tool: notions of *marked and labelled* GM fourfolds. Introduced by Hassett for cubic fourfolds.

If *d* satisfies (**), **Question:** what happens on the level of quotient domains and stacks?

- $\mathsf{H}^2(S,\mathbb{Z})_{\mathsf{pr}}\cong E_8(-1)^{\oplus 2}\oplus U^{\oplus 2}\oplus I_1(-d)=:\Lambda_d;$
- Ω(Λ_d)/Õ(Λ_d) is the moduli space of quasi-polarized degree-d K3 surfaces.

Question: \mathcal{D}_d versus $\Omega(\Lambda_d)/\dot{O}(\Lambda_d)$?

d satisfies (**) $\Leftrightarrow L_d^{\perp} \cong \Lambda_d(-1)$; in this case $\widetilde{O}(L_d^{\perp}) \cong \widetilde{O}(\Lambda_d(-1))$.

Tool: notions of *marked and labelled* GM fourfolds. Introduced by Hassett for cubic fourfolds.

If d satisfies (**), Question: what happens on the level of quotient domains and stacks?

- $\mathsf{H}^2(S,\mathbb{Z})_{\mathsf{pr}}\cong E_8(-1)^{\oplus 2}\oplus U^{\oplus 2}\oplus I_1(-d)=:\Lambda_d;$
- Ω(Λ_d)/Õ(Λ_d) is the moduli space of quasi-polarized degree-d K3 surfaces.

Question: \mathcal{D}_d versus $\Omega(\Lambda_d)/\widetilde{O}(\Lambda_d)$?

d satisfies (**) $\Leftrightarrow L_d^{\perp} \cong \Lambda_d(-1)$; in this case $\widetilde{O}(L_d^{\perp}) \cong \widetilde{O}(\Lambda_d(-1))$.

Tool: notions of *marked and labelled* GM fourfolds. Introduced by Hassett for cubic fourfolds.

★ □ ★ ↓ ★ ↓ ★ ↓ ↓ ↓ ↓

If *d* satisfies (**), Question: what happens on the level of quotient domains and stacks?

- $\mathsf{H}^2(S,\mathbb{Z})_{\mathsf{pr}}\cong E_8(-1)^{\oplus 2}\oplus U^{\oplus 2}\oplus I_1(-d)=:\Lambda_d;$
- Ω(Λ_d)/Õ(Λ_d) is the moduli space of quasi-polarized degree-d K3 surfaces.

Question: \mathcal{D}_d versus $\Omega(\Lambda_d)/\widetilde{O}(\Lambda_d)$?

d satisfies (**) $\Leftrightarrow L_d^{\perp} \cong \Lambda_d(-1)$; in this case $\widetilde{O}(L_d^{\perp}) \cong \widetilde{O}(\Lambda_d(-1))$.

Tool: notions of *marked and labelled* GM fourfolds. Introduced by Hassett for cubic fourfolds.

If d satisfies (**), Question: what happens on the level of quotient domains and stacks?

- $\mathsf{H}^2(S,\mathbb{Z})_{\mathsf{pr}}\cong E_8(-1)^{\oplus 2}\oplus U^{\oplus 2}\oplus I_1(-d)=:\Lambda_d;$
- Ω(Λ_d)/Õ(Λ_d) is the moduli space of quasi-polarized degree-d K3 surfaces.

Question: \mathcal{D}_d versus $\Omega(\Lambda_d)/\widetilde{O}(\Lambda_d)$?

d satisfies (**) $\Leftrightarrow L_d^{\perp} \cong \Lambda_d(-1)$; in this case $\widetilde{O}(L_d^{\perp}) \cong \widetilde{O}(\Lambda_d(-1))$.

Tool: notions of *marked and labelled* GM fourfolds. Introduced by Hassett for cubic fourfolds.

(4月) (3日) (3日) 日

A marked GM fourfold is a Hodge-special GM fourfold X together with a primitive embedding $\varphi \colon L_d \hookrightarrow H^{2,2}(X,\mathbb{Z})$ preserving the classes λ_1 and λ_2 . A labelled GM fourfold is a Hodge-special GM fourfold X together with a primitive sublattice $L_d \subset H^{2,2}(X,\mathbb{Z})$.

Remark: Note that

{ marked GM 4-folds }/ $\cong \rightarrow$ { labelled GM 4-folds }/ \cong ($X, \varphi: L_d \hookrightarrow H^{2,2}(X, \mathbb{Z})$) \mapsto ($X, \varphi(L_d) \subset H^{2,2}(X, \mathbb{Z})$) is surjective, but need not to be injective.

Remember: $O(\Lambda_{00}) \cong \{g \in O(\Lambda) : g|_{\langle \lambda_1, \lambda_2 \rangle} = id\} =: \Gamma$, so define $G(L_d) := \{g \in \Gamma : g(L_d) = L_d\},$ $H(L_d) := \{g \in G(L_d) : g|_{L_d} = id_{L_d}\} \cong \widetilde{O}(L_d^{\perp})$

$\mathcal{D}_{L_d}^{\text{mar}} := \Omega(L_d^{\perp}) / H(L_d), \quad \mathcal{D}_{L_d}^{\text{lab}} := \Omega(L_d^{\perp}) / G(L_d).$

<ロ> (四) (四) (三) (三) (三) (三)

A marked GM fourfold is a Hodge-special GM fourfold X together with a primitive embedding $\varphi \colon L_d \hookrightarrow H^{2,2}(X,\mathbb{Z})$ preserving the classes λ_1 and λ_2 . A labelled GM fourfold is a Hodge-special GM fourfold X together with a primitive sublattice $L_d \subset H^{2,2}(X,\mathbb{Z})$.

Remark: Note that { marked GM 4-folds $\}/\cong \rightarrow$ { labelled GM 4-folds $}/\cong$ $(X, \varphi: L_d \hookrightarrow H^{2,2}(X, \mathbb{Z})) \mapsto (X, \varphi(L_d) \subset H^{2,2}(X, \mathbb{Z}))$ is surjective, but need not to be injective.

Remember: $O(\Lambda_{00}) \cong \{g \in O(\Lambda) : g|_{\langle \lambda_1, \lambda_2 \rangle} = id\} =: \Gamma$, so define $G(L_d) := \{g \in \Gamma : g(L_d) = L_d\},$ $H(L_d) := \{g \in G(L_d) : g|_{L_d} = id_{L_d}\} \cong \widetilde{O}(L_d^{\perp})$

$\mathcal{D}_{L_d}^{\text{mar}} := \Omega(L_d^{\perp})/H(L_d), \quad \mathcal{D}_{L_d}^{\text{lab}} := \Omega(L_d^{\perp})/G(L_d).$

・ロト ・日ト ・ヨト ・ヨト - ヨ

A marked GM fourfold is a Hodge-special GM fourfold X together with a primitive embedding $\varphi \colon L_d \hookrightarrow H^{2,2}(X,\mathbb{Z})$ preserving the classes λ_1 and λ_2 . A labelled GM fourfold is a Hodge-special GM fourfold X together with a primitive sublattice $L_d \subset H^{2,2}(X,\mathbb{Z})$.

Remark: Note that { marked GM 4-folds }/ $\cong \rightarrow$ { labelled GM 4-folds }/ \cong $(X, \varphi: L_d \hookrightarrow H^{2,2}(X, \mathbb{Z})) \mapsto (X, \varphi(L_d) \subset H^{2,2}(X, \mathbb{Z}))$ is surjective, but need not to be injective. Remember: $\widetilde{O}(\Lambda_{00}) \cong \{g \in O(\Lambda) : g|_{\langle \lambda_1, \lambda_2 \rangle} = id\} =: \Gamma$, so define $G(L_d) := \{g \in \Gamma : g(L_d) = L_d\},$ $H(L_d) := \{g \in G(L_d) : g|_{L_d} = id_{L_d}\} \cong \widetilde{O}(L_d^{\perp})$

$\mathcal{D}_{L_d}^{\mathrm{mar}} := \Omega(L_d^{\perp})/H(L_d), \quad \mathcal{D}_{L_d}^{\mathrm{lab}} := \Omega(L_d^{\perp})/G(L_d).$

A marked GM fourfold is a Hodge-special GM fourfold X together with a primitive embedding $\varphi \colon L_d \hookrightarrow H^{2,2}(X,\mathbb{Z})$ preserving the classes λ_1 and λ_2 . A labelled GM fourfold is a Hodge-special GM fourfold X together with a primitive sublattice $L_d \subset H^{2,2}(X,\mathbb{Z})$.

Remark: Note that { marked GM 4-folds }/ $\cong \rightarrow$ { labelled GM 4-folds }/ \cong $(X, \varphi: L_d \hookrightarrow H^{2,2}(X, \mathbb{Z})) \mapsto (X, \varphi(L_d) \subset H^{2,2}(X, \mathbb{Z}))$ is surjective, but need not to be injective. Remember: $\widetilde{O}(\Lambda_{00}) \cong \{g \in O(\Lambda) : g|_{\langle \lambda_1, \lambda_2 \rangle} = id\} =: \Gamma$, so define $G(L_d) := \{g \in \Gamma : g(L_d) = L_d\},$ $H(L_d) := \{g \in G(L_d) : g|_{L_d} = id_{L_d}\} \cong \widetilde{O}(L_d^{\perp})$

 $\mathcal{D}_{L_d}^{\mathsf{mar}} := \Omega(L_d^{\perp})/H(L_d), \quad \mathcal{D}_{L_d}^{\mathsf{lab}} := \Omega(L_d^{\perp})/G(L_d).$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

A marked GM fourfold is a Hodge-special GM fourfold X together with a primitive embedding $\varphi \colon L_d \hookrightarrow H^{2,2}(X,\mathbb{Z})$ preserving the classes λ_1 and λ_2 . A labelled GM fourfold is a Hodge-special GM fourfold X together with a primitive sublattice $L_d \subset H^{2,2}(X,\mathbb{Z})$.

Remark: Note that { marked GM 4-folds }/ $\cong \rightarrow$ { labelled GM 4-folds }/ \cong $(X, \varphi: L_d \hookrightarrow H^{2,2}(X, \mathbb{Z})) \mapsto (X, \varphi(L_d) \subset H^{2,2}(X, \mathbb{Z}))$ is surjective, but need not to be injective. Remember: $\widetilde{O}(\Lambda_{00}) \cong \{g \in O(\Lambda) : g|_{\langle \lambda_1, \lambda_2 \rangle} = id\} =: \Gamma$, so define $G(L_d) := \{g \in \Gamma : g(L_d) = L_d\},$ $H(L_d) := \{g \in G(L_d) : g|_{L_d} = id_{L_d}\} \cong \widetilde{O}(L_d^{\perp})$

 $\mathcal{D}_{L_d}^{ ext{mar}} := \Omega(L_d^{\perp})/H(L_d), \quad \mathcal{D}_{L_d}^{ ext{lab}} := \Omega(L_d^{\perp})/G(L_d).$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

A marked GM fourfold is a Hodge-special GM fourfold X together with a primitive embedding $\varphi \colon L_d \hookrightarrow H^{2,2}(X,\mathbb{Z})$ preserving the classes λ_1 and λ_2 . A labelled GM fourfold is a Hodge-special GM fourfold X together with a primitive sublattice $L_d \subset H^{2,2}(X,\mathbb{Z})$.

Remark: Note that { marked GM 4-folds }/ $\cong \rightarrow$ { labelled GM 4-folds }/ \cong $(X, \varphi: L_d \hookrightarrow H^{2,2}(X, \mathbb{Z})) \mapsto (X, \varphi(L_d) \subset H^{2,2}(X, \mathbb{Z}))$ is surjective, but need not to be injective. Remember: $\widetilde{O}(\Lambda_{00}) \cong \{g \in O(\Lambda) : g|_{\langle \lambda_1, \lambda_2 \rangle} = id\} =: \Gamma$, so define $G(L_d) := \{g \in \Gamma : g(L_d) = L_d\},$ $H(L_d) := \{g \in G(L_d) : g|_{L_d} = id_{L_d}\} \cong \widetilde{O}(L_d^{\perp})$

 $\mathcal{D}_{L_d}^{\mathsf{mar}} := \Omega(L_d^{\perp})/H(L_d), \quad \mathcal{D}_{L_d}^{\mathsf{lab}} := \Omega(L_d^{\perp})/G(L_d).$

(四) (고 말) (말)

= nan

 $\mathsf{Remark} \qquad \Rightarrow \qquad \mathcal{D}_{L_d}^{\mathsf{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\mathsf{lab}}$

 $\bullet = \mathsf{lab}, \mathsf{mar}$

 $\mathcal{D}^{\bullet}_d := \mathcal{D}^{\bullet}_{L_d}$ if $d \equiv 0 \mod 4$.

When $d \equiv 2 \mod 8$, we have two embeddings $\mathcal{D}_{L_d} \xrightarrow{\cong} \mathcal{D}'_d \subset \mathcal{D}$ and $\mathcal{D}_{L_d} \xrightarrow{\cong} \mathcal{D}'_d \subset \mathcal{D}$; let $(\mathcal{D}'_d)^{\bullet}$ and $(\mathcal{D}''_d)^{\bullet}$ be the corresponding spaces $\mathcal{D}^{\bullet}_{L_d}$ over \mathcal{D}'_d and \mathcal{D}''_d , respectively.

 $\mathcal{D}_d^{\bullet} := (\mathcal{D}_d')^{\bullet} \coprod (\mathcal{D}_d'')^{\bullet} \text{ if } d \equiv 2 \mod 8.$

Definition

The moduli stacks of marked and labelled GM fourfolds of discriminant *d* are $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{mar}}$ and $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{lab}}$.

$\mathcal{D}_{L_d}^{\operatorname{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\operatorname{lab}} \twoheadrightarrow \mathcal{D}_{L_d} \subset \mathcal{D}.$

 $\begin{array}{ll} \mathsf{Remark} & \Rightarrow & \mathcal{D}_{L_d}^{\mathsf{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\mathsf{lab}} \\ \bullet = \mathsf{lab}, \mathsf{mar} \end{array}$

 $\mathcal{D}_d^{\bullet} := \mathcal{D}_{L_d}^{\bullet}$ if $d \equiv 0 \mod 4$.

When $d \equiv 2 \mod 8$, we have two embeddings $\mathcal{D}_{L_d} \xrightarrow{\cong} \mathcal{D}'_d \subset \mathcal{D}$ and $\mathcal{D}_{L_d} \xrightarrow{\cong} \mathcal{D}'_d \subset \mathcal{D}$; let $(\mathcal{D}'_d)^{\bullet}$ and $(\mathcal{D}''_d)^{\bullet}$ be the corresponding spaces $\mathcal{D}^{\bullet}_{L_d}$ over \mathcal{D}'_d and \mathcal{D}''_d , respectively.

 $\mathcal{D}_d^{\bullet} := (\mathcal{D}_d')^{\bullet} \coprod (\mathcal{D}_d'')^{\bullet} \text{ if } d \equiv 2 \mod 8.$

Definition

The moduli stacks of marked and labelled GM fourfolds of discriminant *d* are $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{mar}}$ and $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{lab}}$.

$\mathcal{D}_{L_d}^{\text{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\text{lab}} \twoheadrightarrow \mathcal{D}_{L_d} \subset \mathcal{D}.$

$$\mathsf{Remark} \qquad \Rightarrow \qquad \mathcal{D}_{L_d}^{\mathsf{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\mathsf{lab}}$$

 $\bullet = \mathsf{lab}, \mathsf{mar}$

$$\mathcal{D}_d^{\bullet} := \mathcal{D}_{L_d}^{\bullet} \text{ if } d \equiv 0 \mod 4.$$

When $d \equiv 2 \mod 8$, we have two embeddings $\mathcal{D}_{L_d} \xrightarrow{\cong} \mathcal{D}'_d \subset \mathcal{D}$ and $\mathcal{D}_{L_d} \xrightarrow{\cong} \mathcal{D}'_d \subset \mathcal{D}$; let $(\mathcal{D}'_d)^{\bullet}$ and $(\mathcal{D}''_d)^{\bullet}$ be the corresponding spaces $\mathcal{D}^{\bullet}_{L_d}$ over \mathcal{D}'_d and \mathcal{D}''_d , respectively.

$$\mathcal{D}_d^{\bullet} := (\mathcal{D}_d')^{\bullet} \coprod (\mathcal{D}_d'')^{\bullet} \text{ if } d \equiv 2 \mod 8.$$

Definition

The moduli stacks of marked and labelled GM fourfolds of discriminant *d* are $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{mar}}$ and $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{lab}}$.

$\mathcal{D}_{L_d}^{\text{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\text{lab}} \twoheadrightarrow \mathcal{D}_{L_d} \subset \mathcal{D}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\begin{array}{ll} \mathsf{Remark} & \Rightarrow & \mathcal{D}_{L_d}^{\mathsf{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\mathsf{lab}} \\ \bullet = \mathsf{lab} \; \mathsf{mar} \end{array}$$

$$\mathcal{D}^{ullet}_d := \mathcal{D}^{ullet}_{L_d} \text{ if } d \equiv 0 \mod 4.$$

When $d \equiv 2 \mod 8$, we have two embeddings $\mathcal{D}_{L_d} \xrightarrow{\cong} \mathcal{D}'_d \subset \mathcal{D}$ and $\mathcal{D}_{L_d} \xrightarrow{\cong} \mathcal{D}'_d \subset \mathcal{D}$; let $(\mathcal{D}'_d)^{\bullet}$ and $(\mathcal{D}''_d)^{\bullet}$ be the corresponding spaces $\mathcal{D}^{\bullet}_{L_d}$ over \mathcal{D}'_d and \mathcal{D}''_d , respectively.

$$\mathcal{D}_d^{\bullet} := (\mathcal{D}_d')^{\bullet} \coprod (\mathcal{D}_d'')^{\bullet} \text{ if } d \equiv 2 \mod 8.$$

Definition

The moduli stacks of marked and labelled GM fourfolds of discriminant d are $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{mar}}$ and $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{lab}}$.

$\mathcal{D}_{L_d}^{\mathrm{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\mathrm{lab}} \twoheadrightarrow \mathcal{D}_{L_d} \subset \mathcal{D}.$

$$\begin{array}{ll} \mathsf{Remark} & \Rightarrow & \mathcal{D}_{L_d}^{\mathsf{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\mathsf{lab}} \\ \bullet = \mathsf{lab}, \mathsf{mar} \end{array}$$

$$\mathcal{D}_d^{\bullet} := \mathcal{D}_{L_d}^{\bullet} \text{ if } d \equiv 0 \mod 4.$$

When $d \equiv 2 \mod 8$, we have two embeddings $\mathcal{D}_{L_d} \xrightarrow{\cong} \mathcal{D}'_d \subset \mathcal{D}$ and $\mathcal{D}_{L_d} \xrightarrow{\cong} \mathcal{D}'_d \subset \mathcal{D}$; let $(\mathcal{D}'_d)^{\bullet}$ and $(\mathcal{D}''_d)^{\bullet}$ be the corresponding spaces $\mathcal{D}^{\bullet}_{L_d}$ over \mathcal{D}'_d and \mathcal{D}''_d , respectively.

$$\mathcal{D}_d^{\bullet} := (\mathcal{D}_d')^{\bullet} \coprod (\mathcal{D}_d'')^{\bullet} \text{ if } d \equiv 2 \mod 8.$$

Definition

The moduli stacks of marked and labelled GM fourfolds of discriminant d are $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{mar}}$ and $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{lab}}$.

$$\mathcal{D}_{L_d}^{\operatorname{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\operatorname{lab}} \twoheadrightarrow \mathcal{D}_{L_d} \subset \mathcal{D}.$$

- 4 周 ト 4 日 ト 4 日 ト - 日

$$\begin{array}{ll} \mathsf{Remark} & \Rightarrow & \mathcal{D}_{L_d}^{\mathsf{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\mathsf{lab}} \\ \bullet = \mathsf{lab}, \mathsf{mar} \end{array}$$

$$\mathcal{D}^{ullet}_d := \mathcal{D}^{ullet}_{L_d} \text{ if } d \equiv 0 \mod 4.$$

When $d \equiv 2 \mod 8$, we have two embeddings $\mathcal{D}_{L_d} \xrightarrow{\cong} \mathcal{D}'_d \subset \mathcal{D}$ and $\mathcal{D}_{L_d} \xrightarrow{\cong} \mathcal{D}'_d \subset \mathcal{D}$; let $(\mathcal{D}'_d)^{\bullet}$ and $(\mathcal{D}''_d)^{\bullet}$ be the corresponding spaces $\mathcal{D}^{\bullet}_{L_d}$ over \mathcal{D}'_d and \mathcal{D}''_d , respectively.

$$\mathcal{D}_d^{\bullet} := (\mathcal{D}_d')^{\bullet} \coprod (\mathcal{D}_d'')^{\bullet} \text{ if } d \equiv 2 \mod 8.$$

Definition

The moduli stacks of marked and labelled GM fourfolds of discriminant d are $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{mar}}$ and $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{lab}}$.

$$\mathcal{D}_{L_d}^{\mathsf{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\mathsf{lab}} \twoheadrightarrow \mathcal{D}_{L_d} \subset \mathcal{D}.$$

- 4 周 ト 4 日 ト 4 日 ト - 日

Theorem (Brakkee, P.)

The map $\mathcal{D}_{L_d}^{\text{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\text{lab}}$ is an isomorphism. As a consequence, $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{mar}} \cong \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{lab}}$.

Corollary

For every d satisfying (**), there is a rational map $\gamma_d : \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d \dashrightarrow \Omega(\Lambda_d) / \widetilde{O}(\Lambda_d).$

Indeed,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Theorem (Brakkee, P.)

The map $\mathcal{D}_{L_d}^{\text{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\text{lab}}$ is an isomorphism. As a consequence, $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{mar}} \cong \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{lab}}$.

Corollary

For every d satisfying (**), there is a rational map $\gamma_d : \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d \dashrightarrow \Omega(\Lambda_d) / \widetilde{O}(\Lambda_d).$

Indeed,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Theorem (Brakkee, P.)

The map $\mathcal{D}_{L_d}^{\text{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\text{lab}}$ is an isomorphism. As a consequence, $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{mar}} \cong \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d^{\text{lab}}$.

Corollary

For every d satisfying (**), there is a rational map $\gamma_d : \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d \dashrightarrow \Omega(\Lambda_d) / \widetilde{O}(\Lambda_d).$

Indeed,

Comments

- $\mathcal{D}_d \dashrightarrow \Omega(\Lambda_d) / \widetilde{O}(\Lambda_d)$ is birational for $d \equiv 0 \mod 4$, generically two-to-one if $d \equiv 2 \mod 8$.
- γ_d is not unique;
- Analogous statement for GM fourfolds having an associated twisted K3 surface:
 - X has associated twisted K3 surface
 - $\Leftrightarrow d' = \prod_i p_i^{n_i}$ with $n_i \equiv 0 \mod 2$ for $p_i \equiv 3 \mod 4$ (P.);
 - use moduli spaces of polarized twisted K3 surfaces with fixed degree and order (Brakkee).
- Third difference with cubic fourfolds:
 - $\mathcal{D}_{L_d}^{\text{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\text{lab}}$ is isomorphism or two-to-one cover (Hassett).
 - In the second case, there are "two" K3 surfaces, one is a moduli space of stable sheaves on the other (Brakkee).

イロト イヨト イヨト イヨト

Comments

- $\mathcal{D}_d \dashrightarrow \Omega(\Lambda_d) / \widetilde{O}(\Lambda_d)$ is birational for $d \equiv 0 \mod 4$, generically two-to-one if $d \equiv 2 \mod 8$.
- γ_d is not unique;
- Analogous statement for GM fourfolds having an associated twisted K3 surface:
 - X has associated twisted K3 surface
 - $\Leftrightarrow d' = \prod_i p_i^{n_i}$ with $n_i \equiv 0 \mod 2$ for $p_i \equiv 3 \mod 4$ (P.);
 - use moduli spaces of polarized twisted K3 surfaces with fixed degree and order (Brakkee).
- Third difference with cubic fourfolds:
 - $\mathcal{D}_{L_d}^{\text{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\text{lab}}$ is isomorphism or two-to-one cover (Hassett).
 - In the second case, there are "two" K3 surfaces, one is a moduli space of stable sheaves on the other (Brakkee).

イロト イヨト イヨト イヨト

- $\mathcal{D}_d \dashrightarrow \Omega(\Lambda_d) / \widetilde{O}(\Lambda_d)$ is birational for $d \equiv 0 \mod 4$, generically two-to-one if $d \equiv 2 \mod 8$.
- \(\gamma_d\) is not unique;
- Analogous statement for GM fourfolds having an associated twisted K3 surface:
 - X has associated twisted K3 surface
 - $\Leftrightarrow d' = \prod_i p_i^{n_i}$ with $n_i \equiv 0 \mod 2$ for $p_i \equiv 3 \mod 4$ (P.);
 - use moduli spaces of polarized twisted K3 surfaces with fixed degree and order (Brakkee).
- Third difference with cubic fourfolds:
 - $\mathcal{D}_{L_d}^{\text{mar}} \rightarrow \mathcal{D}_{L_d}^{\text{lab}}$ is isomorphism or two-to-one cover (Hassett).
 - In the second case, there are "two" K3 surfaces, one is a moduli space of stable sheaves on the other (Brakkee).

イロト イヨト イヨト イヨト

- $\mathcal{D}_d \dashrightarrow \Omega(\Lambda_d) / \widetilde{O}(\Lambda_d)$ is birational for $d \equiv 0 \mod 4$, generically two-to-one if $d \equiv 2 \mod 8$.
- \(\gamma_d\) is not unique;
- Analogous statement for GM fourfolds having an associated twisted K3 surface:
 - X has associated twisted K3 surface $\Leftrightarrow d' = \prod_i p_i^{n_i}$ with $n_i \equiv 0 \mod 2$ for $p_i \equiv 3 \mod 4$ (P.);
 - use moduli spaces of polarized twisted K3 surfaces with fixed degree and order (Brakkee).
- Third difference with cubic fourfolds:
 - $\mathcal{D}_{L_d}^{\text{mar}} \rightarrow \mathcal{D}_{L_d}^{\text{lab}}$ is isomorphism or two-to-one cover (Hassett).
 - In the second case, there are "two" K3 surfaces, one is a moduli space of stable sheaves on the other (Brakkee).

イロト イヨト イヨト イヨト

- $\mathcal{D}_d \dashrightarrow \Omega(\Lambda_d) / \widetilde{O}(\Lambda_d)$ is birational for $d \equiv 0 \mod 4$, generically two-to-one if $d \equiv 2 \mod 8$.
- \(\gamma_d\) is not unique;
- Analogous statement for GM fourfolds having an associated twisted K3 surface:
 - X has associated twisted K3 surface
 ⇔ d' = ∏_i p_i^{n_i} with n_i ≡ 0 mod 2 for p_i ≡ 3 mod 4 (P.);
 - use moduli spaces of polarized twisted K3 surfaces with fixed degree and order (Brakkee).
- Third difference with cubic fourfolds:
 - $\mathcal{D}_{L_d}^{\text{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\text{lab}}$ is isomorphism or two-to-one cover (Hassett).
 - In the second case, there are "two" K3 surfaces, one is a moduli space of stable sheaves on the other (Brakkee).

イロト イヨト イヨト イヨト

- $\mathcal{D}_d \dashrightarrow \Omega(\Lambda_d) / \widetilde{O}(\Lambda_d)$ is birational for $d \equiv 0 \mod 4$, generically two-to-one if $d \equiv 2 \mod 8$.
- \(\gamma_d\) is not unique;
- Analogous statement for GM fourfolds having an associated twisted K3 surface:
 - X has associated twisted K3 surface
 ⇔ d' = ∏_i p_i^{n_i} with n_i ≡ 0 mod 2 for p_i ≡ 3 mod 4 (P.);
 - use moduli spaces of polarized twisted K3 surfaces with fixed degree and order (Brakkee).
- Third difference with cubic fourfolds:
 - $\mathcal{D}_{L_d}^{\text{mar}} \twoheadrightarrow \mathcal{D}_{L_d}^{\text{lab}}$ is isomorphism or two-to-one cover (Hassett).
 - In the second case, there are "two" K3 surfaces, one is a moduli space of stable sheaves on the other (Brakkee).

・ロト ・四ト ・ヨト

Proposition (Kuznetsov, Perry)

$\mathsf{D^b}(X) = \langle \mathsf{Ku}(X), \mathcal{O}_X, \mathcal{U}_X^*, \mathcal{O}_X(1), \mathcal{U}_X^*(1) \rangle$

The Kuznetsov component of X is

 $\begin{aligned} \mathsf{Ku}(X) &:= \{ E \in \mathsf{D}^{b}(X) : \mathrm{Hom}_{\mathsf{D}^{b}(X)}(\mathcal{O}_{X}(i), E) = 0, \\ \mathrm{Hom}_{\mathsf{D}^{b}(X)}(\mathcal{U}_{X}^{*}(i), E) = 0 \text{ for all } i = 0, 1 \}. \end{aligned}$

Key property:

Ku(X) is a subcategory of K3 type: it has the same Serre functor and same Hochschild homology of $D^b(S)$, where S is a K3 surface.

Definition

X has a homological associated K3 surface if $Ku(X) \simeq D^{b}(S)$ for a K3 surface S.

Proposition (Kuznetsov, Perry)

$$\mathsf{D^b}(X) = \langle \mathsf{Ku}(X), \mathcal{O}_X, \mathcal{U}_X^*, \mathcal{O}_X(1), \mathcal{U}_X^*(1)
angle$$

The Kuznetsov component of X is

$$\begin{split} \mathsf{Ku}(X) &:= \{ E \in \mathsf{D}^b(X) : \operatorname{Hom}_{\mathsf{D}^b(X)}(\mathcal{O}_X(i), E) = 0, \\ &\quad \operatorname{Hom}_{\mathsf{D}^b(X)}(\mathcal{U}_X^*(i), E) = 0 \text{ for all } i = 0, 1 \}. \end{split}$$

Key property:

Ku(X) is a subcategory of K3 type: it has the same Serre functor and same Hochschild homology of $D^b(S)$, where S is a K3 surface.

Definition

X has a homological associated K3 surface if $Ku(X) \simeq D^{b}(S)$ for a K3 surface S.

(周) (王) (王)

Proposition (Kuznetsov, Perry)

$$\mathsf{D^b}(X) = \langle \mathsf{Ku}(X), \mathcal{O}_X, \mathcal{U}_X^*, \mathcal{O}_X(1), \mathcal{U}_X^*(1)
angle$$

The Kuznetsov component of X is

$$\begin{split} \mathsf{Ku}(X) &:= \{ E \in \mathsf{D}^b(X) : \operatorname{Hom}_{\mathsf{D}^b(X)}(\mathcal{O}_X(i), E) = 0, \\ &\quad \operatorname{Hom}_{\mathsf{D}^b(X)}(\mathcal{U}_X^*(i), E) = 0 \text{ for all } i = 0, 1 \}. \end{split}$$

Key property:

Ku(X) is a subcategory of K3 type: it has the same Serre functor and same Hochschild homology of $D^b(S)$, where S is a K3 surface.

Definition

X has a homological associated K3 surface if $Ku(X) \simeq D^b(S)$ for a K3 surface S.

・ 回 ト ・ ヨ ト ・ ヨ ト …

Proposition (Kuznetsov, Perry)

$$\mathsf{D^b}(X) = \langle \mathsf{Ku}(X), \mathcal{O}_X, \mathcal{U}_X^*, \mathcal{O}_X(1), \mathcal{U}_X^*(1)
angle$$

The Kuznetsov component of X is

$$\begin{split} \mathsf{Ku}(X) &:= \{ E \in \mathsf{D}^b(X) : \operatorname{Hom}_{\mathsf{D}^b(X)}(\mathcal{O}_X(i), E) = 0, \\ &\quad \operatorname{Hom}_{\mathsf{D}^b(X)}(\mathcal{U}_X^*(i), E) = 0 \text{ for all } i = 0, 1 \}. \end{split}$$

Key property:

Ku(X) is a subcategory of K3 type: it has the same Serre functor and same Hochschild homology of $D^b(S)$, where S is a K3 surface.

Definition

X has a homological associated K3 surface if $Ku(X) \simeq D^b(S)$ for a K3 surface S.

(四) (도) (도)

Application to FM partners

Definition

A GM fourfold X' is a Fourier–Mukai partner of X if there exists an exact equivalence $Ku(X) \simeq Ku(X')$ of Fourier–Mukai type.

Kuznetsov, Perry

Non-isomorphic GM fourfolds in the same fiber of the period map are FM partners. So Categorical Torelli Theorem does not hold for GM fourfolds.

Theorem (Brakkee, P.)

Let X be very general in $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d$ with d satisfying (**). Let $\tau(d)$ be the number of distinct primes that divide d/2. Then when $d \equiv 4 \mod 8$ (resp. $d \equiv 2 \mod 8$), there are $2^{\tau(d)-1}$ (resp. $2^{\tau(d)}$) fibers of the period map such that, when non-empty, their elements are FM partners of X. Moreover, all FM partners of X are obtained in this way.

Application to FM partners

Definition

A GM fourfold X' is a Fourier–Mukai partner of X if there exists an exact equivalence $Ku(X) \simeq Ku(X')$ of Fourier–Mukai type.

Kuznetsov, Perry

Non-isomorphic GM fourfolds in the same fiber of the period map are FM partners. So Categorical Torelli Theorem does not hold for GM fourfolds.

Theorem (Brakkee, P.)

Let X be very general in $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d$ with d satisfying (**). Let $\tau(d)$ be the number of distinct primes that divide d/2. Then when $d \equiv 4 \mod 8$ (resp. $d \equiv 2 \mod 8$), there are $2^{\tau(d)-1}$ (resp. $2^{\tau(d)}$) fibers of the period map such that, when non-empty, their elements are FM partners of X. Moreover, all FM partners of X are obtained in this way.

Application to FM partners

Definition

A GM fourfold X' is a Fourier–Mukai partner of X if there exists an exact equivalence $Ku(X) \simeq Ku(X')$ of Fourier–Mukai type.

Kuznetsov, Perry

Non-isomorphic GM fourfolds in the same fiber of the period map are FM partners. So Categorical Torelli Theorem does not hold for GM fourfolds.

Theorem (Brakkee, P.)

Let X be very general in $\mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d$ with d satisfying (**). Let $\tau(d)$ be the number of distinct primes that divide d/2. Then when $d \equiv 4 \mod 8$ (resp. $d \equiv 2 \mod 8$), there are $2^{\tau(d)-1}$ (resp. $2^{\tau(d)}$) fibers of the period map such that, when non-empty, their elements are FM partners of X. Moreover, all FM partners of X are obtained in this way.

- Analogous result for cubic fourfolds (P. and Fan, Lai 2020).
- We prove a similar statement in the case of associated twisted K3 surface.

For the proof we use:

- the rational map $\gamma_d : \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d \dashrightarrow \Omega(\Lambda_d) / O(\Lambda_d);$
- if X very general in M₄ ×_D D_d, then X has Hodge associated K3 surface if and only if X has homological associated K3 surface (Perry, P., Zhao).

Fourth difference with cubic fourfolds, where these notions are equivalent (Addington, Thomas and Bayer, Lahoz, Macrì, Nuer, Perry, Stellari).

- Analogous result for cubic fourfolds (P. and Fan, Lai 2020).
- We prove a similar statement in the case of associated twisted K3 surface.

For the proof we use:

- the rational map $\gamma_d : \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d \dashrightarrow \Omega(\Lambda_d) / O(\Lambda_d);$
- if X very general in M₄ ×_D D_d, then X has Hodge associated K3 surface if and only if X has homological associated K3 surface (Perry, P., Zhao).

Fourth difference with cubic fourfolds, where these notions are equivalent (Addington, Thomas and Bayer, Lahoz, Macrì, Nuer, Perry, Stellari).

- Analogous result for cubic fourfolds (P. and Fan, Lai 2020).
- We prove a similar statement in the case of associated twisted K3 surface.
- For the proof we use:
 - the rational map $\gamma_d : \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d \dashrightarrow \Omega(\Lambda_d) / \widetilde{O}(\Lambda_d);$
 - if X very general in M₄×_D D_d, then X has Hodge associated K3 surface if and only if X has homological associated K3 surface (Perry, P., Zhao).

Fourth difference with cubic fourfolds, where these notions are equivalent (Addington, Thomas and Bayer, Lahoz, Macrì, Nuer, Perry, Stellari).

- Analogous result for cubic fourfolds (P. and Fan, Lai 2020).
- We prove a similar statement in the case of associated twisted K3 surface.

For the proof we use:

- the rational map $\gamma_d : \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d \dashrightarrow \Omega(\Lambda_d) / \widetilde{O}(\Lambda_d);$
- if X very general in M₄×_D D_d, then X has Hodge associated K3 surface if and only if X has homological associated K3 surface (Perry, P., Zhao).

Fourth difference with cubic fourfolds, where these notions are equivalent (Addington, Thomas and Bayer, Lahoz, Macrì, Nuer, Perry, Stellari).

- Analogous result for cubic fourfolds (P. and Fan, Lai 2020).
- We prove a similar statement in the case of associated twisted K3 surface.

For the proof we use:

- the rational map $\gamma_d : \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d \dashrightarrow \Omega(\Lambda_d) / \widetilde{O}(\Lambda_d);$
- if X very general in M₄×_D D_d, then X has Hodge associated K3 surface if and only if X has homological associated K3 surface (Perry, P., Zhao).

Fourth difference with cubic fourfolds, where these notions are equivalent (Addington, Thomas and Bayer, Lahoz, Macrì, Nuer, Perry, Stellari).

- Analogous result for cubic fourfolds (P. and Fan, Lai 2020).
- We prove a similar statement in the case of associated twisted K3 surface.

For the proof we use:

- the rational map $\gamma_d : \mathcal{M}_4 \times_{\mathcal{D}} \mathcal{D}_d \dashrightarrow \Omega(\Lambda_d) / \widetilde{O}(\Lambda_d);$
- if X very general in M₄×_D D_d, then X has Hodge associated K3 surface if and only if X has homological associated K3 surface (Perry, P., Zhao).

Fourth difference with cubic fourfolds, where these notions are equivalent (Addington, Thomas and Bayer, Lahoz, Macrì, Nuer, Perry, Stellari).

Conjecture (Debarre, Iliev, Manivel)

 $\mathit{Im}(p) = \mathcal{D} \setminus (\mathcal{D}_2 \cup \mathcal{D}_4 \cup \mathcal{D}_8)?$

- For cubic fourfolds $Im(p) = D \setminus (D_2 \cup D_6)$ (Laza, Looijenga).
- Suggestion of Macri: try to use stability conditions, recovering the GM fourfold inside a moduli space of Bridgeland stable objects in Ku(X).

Conjecture (Debarre, Iliev, Manivel)

$$\mathit{Im}(p) = \mathcal{D} \setminus (\mathcal{D}_2 \cup \mathcal{D}_4 \cup \mathcal{D}_8)?$$

• For cubic fourfolds $Im(p) = D \setminus (D_2 \cup D_6)$ (Laza, Looijenga).

 Suggestion of Macri: try to use stability conditions, recovering the GM fourfold inside a moduli space of Bridgeland stable objects in Ku(X).

(日本) (日本) (日本)

Conjecture (Debarre, Iliev, Manivel)

$$\mathit{Im}(p) = \mathcal{D} \setminus (\mathcal{D}_2 \cup \mathcal{D}_4 \cup \mathcal{D}_8)?$$

- For cubic fourfolds $Im(p) = \mathcal{D} \setminus (\mathcal{D}_2 \cup \mathcal{D}_6)$ (Laza, Looijenga).
- Suggestion of Macri: try to use stability conditions, recovering the GM fourfold inside a moduli space of Bridgeland stable objects in Ku(X).

A (20) A (20) A (20) A