Marked and labelled Gushel－Mukai fourfolds

Laura Pertusi

Dipartimento di Matematica＂F．Enriques＂ Università degli Studi di Milano

Joint work with Emma Brakkee（arXiv：2002．04248）

Outline

(1) Hodge theory for Gushel-Mukai fourfolds; (2) Associated K3 surface and main results; (3) Application to Fourier-Mukai partners.

Outline

(1) Hodge theory for Gushel-Mukai fourfolds;
(2) Associated K3 surface and main results;

Outline

(1) Hodge theory for Gushel-Mukai fourfolds;
(2) Associated K3 surface and main results;
(3) Application to Fourier-Mukai partners.

Gushel-Mukai fourfolds

We work over \mathbb{C}. Let V_{5} be a 5 -dimensional \mathbb{C}-vector space.

Gushel-Mukai fourfolds

We work over \mathbb{C}. Let V_{5} be a 5 -dimensional \mathbb{C}-vector space. Consider:

- $\operatorname{Gr}\left(2, V_{5}\right) \subset \mathbb{P}\left(\bigwedge^{2} V_{5}\right) \cong \mathbb{P}^{9}$ via Plücker embedding;

Gushel-Mukai fourfolds

We work over \mathbb{C}. Let V_{5} be a 5 -dimensional \mathbb{C}-vector space. Consider:

- $\operatorname{Gr}\left(2, V_{5}\right) \subset \mathbb{P}\left(\bigwedge^{2} V_{5}\right) \cong \mathbb{P}^{9}$ via Plücker embedding;
- the cone over the $\operatorname{Grassmannian~} \operatorname{Gr}\left(2, V_{5}\right)$ with vertex $\nu:=\mathbb{P}(\mathbb{C})$

$$
\operatorname{CGr}\left(2, V_{5}\right) \subset \mathbb{P}\left(\mathbb{C} \oplus \bigwedge^{2} V_{5}\right) \cong \mathbb{P}^{10}
$$

Gushel-Mukai fourfolds

We work over \mathbb{C}. Let V_{5} be a 5 -dimensional \mathbb{C}-vector space. Consider:

- $\operatorname{Gr}\left(2, V_{5}\right) \subset \mathbb{P}\left(\bigwedge^{2} V_{5}\right) \cong \mathbb{P}^{9}$ via Plücker embedding;
- the cone over the $\operatorname{Grassmannian~} \operatorname{Gr}\left(2, V_{5}\right)$ with vertex $\nu:=\mathbb{P}(\mathbb{C})$

$$
\operatorname{CGr}\left(2, V_{5}\right) \subset \mathbb{P}\left(\mathbb{C} \oplus \bigwedge^{2} V_{5}\right) \cong \mathbb{P}^{10}
$$

- $\mathbb{P}(W) \cong \mathbb{P}^{8} \subset \mathbb{P}\left(\mathbb{C} \oplus \bigwedge^{2} V_{5}\right)$;

Gushel-Mukai fourfolds

We work over \mathbb{C}. Let V_{5} be a 5 -dimensional \mathbb{C}-vector space. Consider:

- $\operatorname{Gr}\left(2, V_{5}\right) \subset \mathbb{P}\left(\bigwedge^{2} V_{5}\right) \cong \mathbb{P}^{9}$ via Plücker embedding;
- the cone over the $\operatorname{Grassmannian~} \operatorname{Gr}\left(2, V_{5}\right)$ with vertex $\nu:=\mathbb{P}(\mathbb{C})$

$$
\operatorname{CGr}\left(2, V_{5}\right) \subset \mathbb{P}\left(\mathbb{C} \oplus \bigwedge^{2} V_{5}\right) \cong \mathbb{P}^{10}
$$

- $\mathbb{P}(W) \cong \mathbb{P}^{8} \subset \mathbb{P}\left(\mathbb{C} \oplus \bigwedge^{2} V_{5}\right)$;
- a quadric hypersurface $Q \subset \mathbb{P}(W)$.

Gushel-Mukai fourfolds

We work over \mathbb{C}. Let V_{5} be a 5 -dimensional \mathbb{C}-vector space. Consider:

- $\operatorname{Gr}\left(2, V_{5}\right) \subset \mathbb{P}\left(\bigwedge^{2} V_{5}\right) \cong \mathbb{P}^{9}$ via Plücker embedding;
- the cone over the $\operatorname{Grassmannian~} \operatorname{Gr}\left(2, V_{5}\right)$ with vertex

$$
\nu:=\mathbb{P}(\mathbb{C})
$$

$$
\operatorname{CGr}\left(2, V_{5}\right) \subset \mathbb{P}\left(\mathbb{C} \oplus \Lambda^{2} V_{5}\right) \cong \mathbb{P}^{10}
$$

- $\mathbb{P}(W) \cong \mathbb{P}^{8} \subset \mathbb{P}\left(\mathbb{C} \oplus \bigwedge^{2} V_{5}\right)$;
- a quadric hypersurface $Q \subset \mathbb{P}(W)$.

Definition

A Gushel-Mukai (GM) fourfold is a smooth four-dimensional intersection

$$
X=\operatorname{CGr}\left(2, V_{5}\right) \cap Q
$$

Gushel-Mukai fourfolds

We work over \mathbb{C}. Let V_{5} be a 5 -dimensional \mathbb{C}-vector space. Consider:

- $\operatorname{Gr}\left(2, V_{5}\right) \subset \mathbb{P}\left(\bigwedge^{2} V_{5}\right) \cong \mathbb{P}^{9}$ via Plücker embedding;
- the cone over the $\operatorname{Grassmannian} \operatorname{Gr}\left(2, V_{5}\right)$ with vertex

$$
\nu:=\mathbb{P}(\mathbb{C})
$$

$$
\operatorname{CGr}\left(2, V_{5}\right) \subset \mathbb{P}\left(\mathbb{C} \oplus \Lambda^{2} V_{5}\right) \cong \mathbb{P}^{10}
$$

- $\mathbb{P}(W) \cong \mathbb{P}^{8} \subset \mathbb{P}\left(\mathbb{C} \oplus \bigwedge^{2} V_{5}\right)$;
- a quadric hypersurface $Q \subset \mathbb{P}(W)$.

Definition

A Gushel-Mukai (GM) fourfold is a smooth four-dimensional intersection

$$
X=\operatorname{CGr}\left(2, V_{5}\right) \cap Q
$$

If $H \subset X$ is the hyperplane class, then $H^{4}=10$ and $K_{X}=-2 H$.
Thus X is a Fano fourfold.

Motivations

GM fourfolds were firstly studied by:

- Debarre, lliev, Manivel and Debarre, Kuznetsov from the Hodge-theoretical view point;
- Kuznetsov, Perry from the derived category view point.

Motivations

GM fourfolds were firstly studied by:

- Debarre, lliev, Manivel and Debarre, Kuznetsov from the Hodge-theoretical view point;
- Kuznetsov, Perry from the derived category view point.

Leitmotiv

Analogy with cubic fourfolds.
GM fourfolds are "related" to K3 surfaces and give rise to a rich hyperkähler geometry.

Motivations

GM fourfolds were firstly studied by:

- Debarre, Iliev, Manivel and Debarre, Kuznetsov from the Hodge-theoretical view point;
- Kuznetsov, Perry from the derived category view point.

Leitmotiv

Analogy with cubic fourfolds.
GM fourfolds are "related" to K3 surfaces and give rise to a rich hyperkähler geometry.

Our goal:
Explain better the connection with K3 surfaces on the level of period domains and moduli stacks/spaces \rightsquigarrow arises a difference with cubic fourfolds.

Interlude on lattices

Given a lattice L,

- Disc $L:=L^{\vee} / L$ is the discriminant group of L;
- $A_{1}=I_{1}(2)$
- $U=\left(\mathbb{Z}^{\oplus 2} \cdot\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$ is the hyperbolic plane;
- E_{8} is the unique even unimodular lattice of signature $(8,0)$

Interlude on lattices

Given a lattice L,

- Disc $L:=L^{V} / L$ is the discriminant group of L;
- the discriminant of L is the order of Disc L;
- $A_{1}=I_{1}(2)$
- $U=\left(\mathbb{Z}^{\oplus 2},\left(\begin{array}{ll}0 \\ 1 & 1\end{array}\right)\right)$ is the hyperbolic plane;
- E_{8} is the unique even unimodular lattice of signature $(8,0)$

Interlude on lattices

Given a lattice L,

- Disc $L:=L^{\vee} / L$ is the discriminant group of L;
- the discriminant of L is the order of Disc L;
- $\widetilde{O}(L):=\operatorname{Ker}(\mathrm{O}(L) \rightarrow \mathrm{O}($ Disc $L))$ is the stable orthogonal group of L;
- $A_{1}=I_{1}(2)$
- $U=\left(\mathbb{Z}^{\oplus 2},\left(\begin{array}{ll}0 \\ 1 & 1\end{array}\right)\right)$ is the hyperbolic plane;
- E_{8} is the unique even unimodular lattice of signature $(8,0)$

Interlude on lattices

Given a lattice L,

- Disc $L:=L^{\vee} / L$ is the discriminant group of L;
- the discriminant of L is the order of Disc L;
- $\widetilde{O}(L):=\operatorname{Ker}(\mathrm{O}(L) \rightarrow \mathrm{O}($ Disc $L))$ is the stable orthogonal group of L;
- given $m \neq 0 \in \mathbb{Z}, L(m)$ is the lattice L with the intersection form multiplied by m.
- $A_{1}=I_{1}(2)$;
- $U=\left(\mathbb{Z}^{\oplus 2},\left(\begin{array}{ll}0 \\ 1 & \frac{1}{2}\end{array}\right)\right)$ is the hyperbolic plane;
- E_{8} is the unique even unimodular lattice of signature $(8,0)$

Interlude on lattices

Given a lattice L,

- Disc $L:=L^{\vee} / L$ is the discriminant group of L;
- the discriminant of L is the order of Disc L;
- $\widetilde{O}(L):=\operatorname{Ker}(\mathrm{O}(L) \rightarrow \mathrm{O}($ Disc $L))$ is the stable orthogonal group of L;
- given $m \neq 0 \in \mathbb{Z}, L(m)$ is the lattice L with the intersection form multiplied by m.

Examples

- $I_{1}=(\mathbb{Z},(1))$;

Interlude on lattices

Given a lattice L,

- Disc $L:=L^{\vee} / L$ is the discriminant group of L;
- the discriminant of L is the order of Disc L;
- $\widetilde{O}(L):=\operatorname{Ker}(\mathrm{O}(L) \rightarrow \mathrm{O}($ Disc $L))$ is the stable orthogonal group of L;
- given $m \neq 0 \in \mathbb{Z}, L(m)$ is the lattice L with the intersection form multiplied by m.

Examples

- $I_{1}=(\mathbb{Z},(1))$;
- $A_{1}=I_{1}(2)$;

Interlude on lattices

Given a lattice L,

- Disc $L:=L^{\vee} / L$ is the discriminant group of L;
- the discriminant of L is the order of Disc L;
- $\widetilde{O}(L):=\operatorname{Ker}(\mathrm{O}(L) \rightarrow \mathrm{O}($ Disc $L))$ is the stable orthogonal group of L;
- given $m \neq 0 \in \mathbb{Z}, L(m)$ is the lattice L with the intersection form multiplied by m.

Examples

- $I_{1}=(\mathbb{Z},(1))$;
- $A_{1}=I_{1}(2)$;
- $U=\left(\mathbb{Z}^{\oplus 2},\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$ is the hyperbolic plane;

Interlude on lattices

Given a lattice L,

- Disc $L:=L^{\vee} / L$ is the discriminant group of L;
- the discriminant of L is the order of Disc L;
- $\widetilde{O}(L):=\operatorname{Ker}(\mathrm{O}(L) \rightarrow \mathrm{O}($ Disc $L))$ is the stable orthogonal group of L;
- given $m \neq 0 \in \mathbb{Z}, L(m)$ is the lattice L with the intersection form multiplied by m.

Examples

- $I_{1}=(\mathbb{Z},(1))$;
- $A_{1}=I_{1}(2)$;
- $U=\left(\mathbb{Z}^{\oplus 2},\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$ is the hyperbolic plane;
- E_{8} is the unique even unimodular lattice of signature $(8,0)$.

Hodge theory for GM4 (Debarre, lliev, Manivel)

Hodge diamond of X (lliev, Manivel):

Hodge theory for GM4 (Debarre, Iliev, Manivel)

Hodge diamond of X (Iliev, Manivel):

| | | | | 1 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 0 | 0 | | 0 | | | |
| | 0 | | 0 | 1 | | 0 | | |
| 0 | | 1 | | 22 | | 1 | | 0. |

Let $\gamma_{X}: X \rightarrow \operatorname{Gr}\left(2, V_{5}\right)$ be the linear projection from the vertex.
Remark: $\gamma_{X}^{*}: H^{4}\left(\operatorname{Gr}\left(2, V_{5}\right), \mathbb{Z}\right)=\left\langle\sigma_{1}^{2}, \sigma_{1,1}\right\rangle \hookrightarrow H^{4}(X, \mathbb{Z})$.

Hodge theory for GM4 (Debarre, lliev, Manivel)

Hodge diamond of X (Iliev, Manivel):

				1					
		0	0		0				
0	0		0	1		0			
		1		22			1		0

Let $\gamma_{X}: X \rightarrow \operatorname{Gr}\left(2, V_{5}\right)$ be the linear projection from the vertex.
Remark: $\gamma_{X}^{*}: H^{4}\left(\operatorname{Gr}\left(2, V_{5}\right), \mathbb{Z}\right)=\left\langle\sigma_{1}^{2}, \sigma_{1,1}\right\rangle \hookrightarrow H^{4}(X, \mathbb{Z})$.

Definition

The vanishing lattice of X is the sublattice $H^{4}(X, \mathbb{Z})_{\text {van }}:=\left\{x \in H^{4}(X, \mathbb{Z}): x \cdot \gamma_{X}^{*}\left(H^{4}\left(\operatorname{Gr}\left(2, V_{5}\right), \mathbb{Z}\right)\right)=0\right\}$.

Hodge theory for GM4 (Debarre, lliev, Manivel)

Hodge diamond of X (Iliev, Manivel):

				0	1				
	0	0		1		0			
0	0		0		0		0		
		1		22		1		0.	

Let $\gamma_{X}: X \rightarrow \operatorname{Gr}\left(2, V_{5}\right)$ be the linear projection from the vertex.
Remark: $\gamma_{X}^{*}: H^{4}\left(\operatorname{Gr}\left(2, V_{5}\right), \mathbb{Z}\right)=\left\langle\sigma_{1}^{2}, \sigma_{1,1}\right\rangle \hookrightarrow H^{4}(X, \mathbb{Z})$.

Definition

The vanishing lattice of X is the sublattice $H^{4}(X, \mathbb{Z})_{\text {van }}:=\left\{x \in H^{4}(X, \mathbb{Z}): x \cdot \gamma_{X}^{*}\left(H^{4}\left(\operatorname{Gr}\left(2, V_{5}\right), \mathbb{Z}\right)\right)=0\right\}$.

- $H^{4}(X, \mathbb{Z}) \cong I^{\oplus 22} \oplus I(-1)^{\oplus 2}=: \Lambda$;

Hodge theory for GM4 (Debarre, lliev, Manivel)

Hodge diamond of X (Iliev, Manivel):

				0	1				
	0	0		1		0			
0	0		0		0		0		
		1		22		1		0.	

Let $\gamma_{X}: X \rightarrow \operatorname{Gr}\left(2, V_{5}\right)$ be the linear projection from the vertex.
Remark: $\gamma_{X}^{*}: H^{4}\left(\operatorname{Gr}\left(2, V_{5}\right), \mathbb{Z}\right)=\left\langle\sigma_{1}^{2}, \sigma_{1,1}\right\rangle \hookrightarrow H^{4}(X, \mathbb{Z})$.

Definition

The vanishing lattice of X is the sublattice $H^{4}(X, \mathbb{Z})_{\text {van }}:=\left\{x \in H^{4}(X, \mathbb{Z}): x \cdot \gamma_{X}^{*}\left(H^{4}\left(\operatorname{Gr}\left(2, V_{5}\right), \mathbb{Z}\right)\right)=0\right\}$.

- $H^{4}(X, \mathbb{Z}) \cong I^{\oplus 22} \oplus I(-1)^{\oplus 2}=: \wedge$;
- $H^{4}(X, \mathbb{Z})_{\mathrm{van}} \cong E_{8}^{\oplus 2} \oplus U^{\oplus 2} \oplus A_{1}^{\oplus 2}=: \Lambda_{00}$;

Hodge theory for GM4 (Debarre, lliev, Manivel)

Hodge diamond of X (Iliev, Manivel):
1

		0		1		0		
0	0		0		0		0	
0		1		22		1		0.

Let $\gamma_{X}: X \rightarrow \operatorname{Gr}\left(2, V_{5}\right)$ be the linear projection from the vertex.
Remark: $\gamma_{X}^{*}: H^{4}\left(\operatorname{Gr}\left(2, V_{5}\right), \mathbb{Z}\right)=\left\langle\sigma_{1}^{2}, \sigma_{1,1}\right\rangle \hookrightarrow H^{4}(X, \mathbb{Z})$.

Definition

The vanishing lattice of X is the sublattice $H^{4}(X, \mathbb{Z})_{\text {van }}:=\left\{x \in H^{4}(X, \mathbb{Z}): x \cdot \gamma_{X}^{*}\left(H^{4}\left(\operatorname{Gr}\left(2, V_{5}\right), \mathbb{Z}\right)\right)=0\right\}$.

- $H^{4}(X, \mathbb{Z}) \cong I^{\oplus 22} \oplus I(-1)^{\oplus 2}=: \Lambda$;
- $H^{4}(X, \mathbb{Z})_{\mathrm{van}} \cong E_{8}^{\oplus 2} \oplus U^{\oplus 2} \oplus A_{1}^{\oplus 2}=: \Lambda_{00}$;
- $\gamma_{X}^{*}\left(H^{4}\left(\operatorname{Gr}\left(2, V_{5}\right), \mathbb{Z}\right) \cong \Lambda_{00}^{\perp} \subset \Lambda\right.$ and $\Lambda_{00}^{\perp}=A_{1}^{\oplus 2}=\left\langle\lambda_{1}, \lambda_{2}\right\rangle$.

Period domain and period map

The period domain of GM fourfolds is

$$
\Omega\left(\Lambda_{00}\right):=\left\{w \in \mathbb{P}\left(\Lambda_{00} \otimes \mathbb{C}\right): w \cdot w=0, w \cdot \bar{w}<0\right\} .
$$

is an irreducible quasi-projective variety of dimension 20.
where \mathcal{M}_{4} is the moduli stack of GM fourfolds.

Period domain and period map

The period domain of GM fourfolds is

$$
\Omega\left(\Lambda_{00}\right):=\left\{w \in \mathbb{P}\left(\Lambda_{00} \otimes \mathbb{C}\right): w \cdot w=0, w \cdot \bar{w}<0\right\} .
$$

$\widetilde{\mathrm{O}}\left(\Lambda_{00}\right)$ acts properly discontinuously on $\Omega\left(\Lambda_{00}\right)$

$$
\rightsquigarrow \quad \mathcal{D}:=\Omega\left(\Lambda_{00}\right) / \widetilde{O}\left(\Lambda_{00}\right)
$$

is an irreducible quasi-projective variety of dimension 20.
\qquad
\qquad

Period domain and period map

The period domain of GM fourfolds is

$$
\Omega\left(\Lambda_{00}\right):=\left\{w \in \mathbb{P}\left(\Lambda_{00} \otimes \mathbb{C}\right): w \cdot w=0, w \cdot \bar{w}<0\right\}
$$

$\widetilde{\mathrm{O}}\left(\Lambda_{00}\right)$ acts properly discontinuously on $\Omega\left(\Lambda_{00}\right)$

$$
\rightsquigarrow \quad \mathcal{D}:=\Omega\left(\Lambda_{00}\right) / \widetilde{\mathrm{O}}\left(\Lambda_{00}\right)
$$

is an irreducible quasi-projective variety of dimension 20.
The period map is

$$
p: \mathcal{M}_{4} \rightarrow \mathcal{D}, \quad[X] \mapsto\left[H^{3,1}(X)\right]
$$

where \mathcal{M}_{4} is the moduli stack of GM fourfolds.
\qquad

Period domain and period map

The period domain of GM fourfolds is

$$
\Omega\left(\Lambda_{00}\right):=\left\{w \in \mathbb{P}\left(\Lambda_{00} \otimes \mathbb{C}\right): w \cdot w=0, w \cdot \bar{w}<0\right\}
$$

$\widetilde{\mathrm{O}}\left(\Lambda_{00}\right)$ acts properly discontinuously on $\Omega\left(\Lambda_{00}\right)$

$$
\rightsquigarrow \quad \mathcal{D}:=\Omega\left(\Lambda_{00}\right) / \widetilde{\mathrm{O}}\left(\Lambda_{00}\right)
$$

is an irreducible quasi-projective variety of dimension 20.
The period map is

$$
p: \mathcal{M}_{4} \rightarrow \mathcal{D}, \quad[X] \mapsto\left[\mathrm{H}^{3,1}(X)\right]
$$

where \mathcal{M}_{4} is the moduli stack of GM fourfolds.

Proposition (Debarre, lliev, Manivel)

p is dominant as a map of stacks with smooth 4-dimensional fibers.
First difference with cubic fourfolds, whose period map is injective! Torelli Theorem does not hold for GM fourfolds.

Special GM fourfolds

A very general GM fourfold X satisfies $\mathrm{rk} \mathrm{H}^{2,2}(X, \mathbb{Z})=2$.

Special GM fourfolds

A very general GM fourfold X satisfies $\mathrm{rk}^{\mathrm{H}^{2,2}}(X, \mathbb{Z})=2$.

Definition

A GM fourfold X is Hodge-special if $\mathrm{rk} H^{2,2}(X, \mathbb{Z}) \geq 3$.
Period points of Hodge-special GM fourfolds lie in codimension-1
containing λ_{1}, λ_{2}, define

Special GM fourfolds

A very general GM fourfold X satisfies $\mathrm{rk}^{\mathrm{H}^{2,2}}(X, \mathbb{Z})=2$.

Definition

A GM fourfold X is Hodge-special if $\mathrm{rk} H^{2,2}(X, \mathbb{Z}) \geq 3$.
Period points of Hodge-special GM fourfolds lie in codimension-1 Noether-Lefschetz loci in \mathcal{D} :

Special GM fourfolds

A very general GM fourfold X satisfies $\mathrm{rk}^{\mathrm{H}^{2,2}}(X, \mathbb{Z})=2$.

Definition

A GM fourfold X is Hodge-special if $\mathrm{rk} H^{2,2}(X, \mathbb{Z}) \geq 3$.
Period points of Hodge-special GM fourfolds lie in codimension-1 Noether-Lefschetz loci in \mathcal{D} :

- For a primitive sublattice $L_{d} \subset \Lambda$ of rank 3 and discriminant d containing λ_{1}, λ_{2}, define

$$
\Omega\left(L_{d}^{\perp}\right):=\mathbb{P}\left(L_{d}^{\perp} \otimes \mathbb{C}\right) \cap \Omega\left(\Lambda_{00}\right)
$$

where $L_{d} \frac{1}{}$ is the orthogonal complement of L_{d} in Λ.

Special GM fourfolds

A very general GM fourfold X satisfies $\mathrm{rk}^{\mathrm{H}^{2,2}}(X, \mathbb{Z})=2$.

Definition

A GM fourfold X is Hodge-special if $\mathrm{rk} H^{2,2}(X, \mathbb{Z}) \geq 3$.
Period points of Hodge-special GM fourfolds lie in codimension-1 Noether-Lefschetz loci in \mathcal{D} :

- For a primitive sublattice $L_{d} \subset \Lambda$ of rank 3 and discriminant d containing λ_{1}, λ_{2}, define

$$
\Omega\left(L_{d}^{\perp}\right):=\mathbb{P}\left(L_{d}^{\perp} \otimes \mathbb{C}\right) \cap \Omega\left(\Lambda_{00}\right)
$$

where $L_{d} \frac{1}{d}$ is the orthogonal complement of L_{d} in Λ.

- Let

$$
\mathcal{D}_{L_{d}} \subset \mathcal{D}
$$

be the image of $\Omega\left(L_{d}^{\perp}\right)$ under the map $\Omega\left(\Lambda_{00}\right) \rightarrow \mathcal{D}$.

Special GM fourfolds

A very general GM fourfold X satisfies $\mathrm{rk}^{\mathrm{H}^{2,2}}(X, \mathbb{Z})=2$.

Definition

A GM fourfold X is Hodge-special if $\mathrm{rk} H^{2,2}(X, \mathbb{Z}) \geq 3$.
Period points of Hodge-special GM fourfolds lie in codimension-1 Noether-Lefschetz loci in \mathcal{D} :

- For a primitive sublattice $L_{d} \subset \Lambda$ of rank 3 and discriminant d containing λ_{1}, λ_{2}, define

$$
\Omega\left(L_{d}^{\perp}\right):=\mathbb{P}\left(L_{d}^{\perp} \otimes \mathbb{C}\right) \cap \Omega\left(\Lambda_{00}\right)
$$

where $L_{d} \frac{1}{}$ is the orthogonal complement of L_{d} in Λ.

- Let

$$
\mathcal{D}_{L_{d}} \subset \mathcal{D}
$$

be the image of $\Omega\left(L_{d}\right)$ under the map $\Omega\left(\Lambda_{00}\right) \rightarrow \mathcal{D}$.
The period of any Hodge-special GM fourfold lies in $\mathcal{D}_{L_{d}}$ for some L_{d}.

Properties (Debarre, lliev, Manivel)

- $\mathcal{D}_{L_{d}} \neq \emptyset \Leftrightarrow d \equiv 0,2,4(\bmod 8)$.

Properties (Debarre, Iliev, Manivel)

- $\mathcal{D}_{L_{d}} \neq \emptyset \Leftrightarrow d \equiv 0,2,4(\bmod 8)$.
- Up to the action of $\widetilde{\mathrm{O}}\left(\Lambda_{00}\right), L_{d} \cong$

$$
\begin{gathered}
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2 k
\end{array}\right) \quad \text { if } d=8 k, \\
\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 2 k
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 1 \\
0 & 1 & 2 k
\end{array}\right) \quad \text { if } d=2+8 k, \\
\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 2 & 1 \\
1 & 1 & 2 k
\end{array}\right) \quad \text { if } d=4+8 k .
\end{gathered}
$$

Properties (Debarre, Iliev, Manivel)

- $\mathcal{D}_{L_{d}} \neq \emptyset \Leftrightarrow d \equiv 0,2,4(\bmod 8)$.
- Up to the action of $\widetilde{\mathrm{O}}\left(\Lambda_{00}\right), L_{d} \cong$

$$
\begin{gathered}
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2 k
\end{array}\right) \quad \text { if } d=8 k, \\
\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 2 k
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 1 \\
0 & 1 & 2 k
\end{array}\right) \quad \text { if } d=2+8 k, \\
\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 2 & 1 \\
1 & 1 & 2 k
\end{array}\right) \quad \text { if } d=4+8 k .
\end{gathered}
$$

- There exists an involution $r \in \mathrm{O}\left(\Lambda_{00}\right)$ which is not in $\widetilde{\mathrm{O}}\left(\Lambda_{00}\right)$, such that $r\left(\lambda_{1}\right)=\lambda_{2}$, exchanging the two embeddings of L_{d} in Λ.

Stacks of Hodge-special GM fourfolds

Summary

Periods of Hodge-special GM fourfolds are contained in the union of

- irreducible hypersurfaces $\mathcal{D}_{d} \subset \mathcal{D}$ for all $d \equiv 0 \bmod 4$;
- the unions $\mathcal{D}_{d}:=\mathcal{D}_{d}^{\prime} \cup \mathcal{D}_{d}^{\prime \prime}$ of irreducible hypersurfaces for all $d \equiv 2 \bmod 8$ (second difference with cubic fourfolds).

Stacks of Hodge-special GM fourfolds

Summary

Periods of Hodge-special GM fourfolds are contained in the union of

- irreducible hypersurfaces $\mathcal{D}_{d} \subset \mathcal{D}$ for all $d \equiv 0 \bmod 4$;
- the unions $\mathcal{D}_{d}:=\mathcal{D}_{d}^{\prime} \cup \mathcal{D}_{d}^{\prime \prime}$ of irreducible hypersurfaces for all $d \equiv 2 \bmod 8$ (second difference with cubic fourfolds).

We say \underline{X} has discriminant d if $p(X) \in \mathcal{D}_{d}$.

[^0]
Stacks of Hodge-special GM fourfolds

Summary

Periods of Hodge-special GM fourfolds are contained in the union of

- irreducible hypersurfaces $\mathcal{D}_{d} \subset \mathcal{D}$ for all $d \equiv 0 \bmod 4$;
- the unions $\mathcal{D}_{d}:=\mathcal{D}_{d}^{\prime} \cup \mathcal{D}_{d}^{\prime \prime}$ of irreducible hypersurfaces for all $d \equiv 2 \bmod 8$ (second difference with cubic fourfolds).

We say \underline{X} has discriminant d if $p(X) \in \mathcal{D}_{d}$.
Theorem (Debarre, lliev, Manivel)
$\mathcal{D}_{L_{d}} \cap \operatorname{Im}(p)$ for $d>8$.

Stacks of Hodge-special GM fourfolds

Summary

Periods of Hodge-special GM fourfolds are contained in the union of

- irreducible hypersurfaces $\mathcal{D}_{d} \subset \mathcal{D}$ for all $d \equiv 0 \bmod 4$;
- the unions $\mathcal{D}_{d}:=\mathcal{D}_{d}^{\prime} \cup \mathcal{D}_{d}^{\prime \prime}$ of irreducible hypersurfaces for all $d \equiv 2 \bmod 8$ (second difference with cubic fourfolds).

We say \underline{X} has discriminant d if $p(X) \in \mathcal{D}_{d}$.
Theorem (Debarre, Illiev, Manivel)
$\mathcal{D}_{L_{d}} \cap \operatorname{Im}(p)$ for $d>8$.
The moduli stack of GM fourfolds of discriminant d is

$$
\mathcal{M}_{4} \times_{\mathcal{D}} \mathcal{D}_{d}
$$

Associated K3 surface

Definition (Debarre, Iliev, Manivel)

$X \in \mathcal{M}_{4} \times_{\mathcal{D}} \mathcal{D}_{d}$ has a Hodge-associated degree-d polarized K3 surface (S, I) if there is a Hodge isometry $L_{d} \cong H^{2}(S, \mathbb{Z})_{\text {prim }}(-1)$.

$$
\Leftrightarrow d \equiv 2,4 \bmod 8 \text { and } p \nmid d \text { for every prime } p \equiv 3 \bmod 4 .(* *)
$$

Associated K3 surface

Definition (Debarre, Iliev, Manivel)

$X \in \mathcal{M}_{4} \times_{\mathcal{D}} \mathcal{D}_{d}$ has a Hodge-associated degree-d polarized K3 surface (S, I) if there is a Hodge isometry $L_{d} \cong H^{2}(S, \mathbb{Z})_{\text {prim }}(-1)$.

$$
\Leftrightarrow d \equiv 2,4 \bmod 8 \text { and } p \nmid d \text { for every prime } p \equiv 3 \bmod 4 .(* *)
$$

Motivation:

Conjecture (Players of GM fourfolds)
X is rational if and only if $X \in \mathcal{M}_{4} \times{ }_{\mathcal{D}} \mathcal{D}_{d}$ for d satisfying $(* *)$.

Associated K3 surface

Definition (Debarre, lliev, Manivel)

$X \in \mathcal{M}_{4} \times{ }_{\mathcal{D}} \mathcal{D}_{d}$ has a Hodge-associated degree-d polarized K3 surface (S, I) if there is a Hodge isometry $L_{d} \cong H^{2}(S, \mathbb{Z})_{\text {prim }}(-1)$.
$\Leftrightarrow d \equiv 2,4 \bmod 8$ and $p \nmid d$ for every prime $p \equiv 3 \bmod 4 .(* *)$

Motivation:

Conjecture (Players of GM fourfolds)

X is rational if and only if $X \in \mathcal{M}_{4} \times{ }_{\mathcal{D}} \mathcal{D}_{d}$ for d satisfying $(* *)$.
Known examples of rational GM fourfolds are in

- $\mathcal{M}_{4} \times_{\mathcal{D}} \mathcal{D}_{10}^{\prime}, \mathcal{M}_{4} \times{ }_{\mathcal{D}} \mathcal{D}_{10}^{\prime \prime}$ (Debarre, lliev, Manivel);
- $\mathcal{M}_{4} \times{ }_{\mathcal{D}} \mathcal{D}_{20}$ (Hoff, Staglianò in 2019);
- $\mathcal{M}_{4} \times \mathcal{D} \mathcal{D}_{26}^{\prime \prime}$ (Staglianò in 2020).

Relation on the stack level

If d satisfies $(* *)$,

Relation on the stack level

If d satisfies $(* *)$,
Question: what happens on the level of quotient domains and stacks?

Relation on the stack level

If d satisfies ($* *$),
Question: what happens on the level of quotient domains and stacks?

- $\mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{pr}} \cong E_{8}(-1)^{\oplus 2} \oplus U^{\oplus 2} \oplus I_{1}(-d)=: \Lambda_{d} ;$

Relation on the stack level

If d satisfies $(* *)$,
Question: what happens on the level of quotient domains and stacks?

- $\mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{pr}} \cong E_{8}(-1)^{\oplus 2} \oplus U^{\oplus 2} \oplus I_{1}(-d)=: \Lambda_{d}$;
- $\Omega\left(\Lambda_{d}\right) / \widetilde{O}\left(\Lambda_{d}\right)$ is the moduli space of quasi-polarized degree-d K3 surfaces.

Relation on the stack level

If d satisfies $(* *)$,
Question: what happens on the level of quotient domains and stacks?

- $\mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{pr}} \cong E_{8}(-1)^{\oplus 2} \oplus U^{\oplus 2} \oplus I_{1}(-d)=: \Lambda_{d}$;
- $\Omega\left(\Lambda_{d}\right) / \widetilde{O}\left(\Lambda_{d}\right)$ is the moduli space of quasi-polarized degree- d K3 surfaces.

Question: \mathcal{D}_{d} versus $\Omega\left(\Lambda_{d}\right) / \widetilde{\mathrm{O}}\left(\Lambda_{d}\right)$?
d satisfies

Tool: notions of marked and labelled GM fourfolds.
Introduced hy Hassett for cuhic fourfolds.

Relation on the stack level

If d satisfies $(* *)$,
Question: what happens on the level of quotient domains and stacks?

- $\mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{pr}} \cong E_{8}(-1)^{\oplus 2} \oplus U^{\oplus 2} \oplus I_{1}(-d)=: \Lambda_{d}$;
- $\Omega\left(\Lambda_{d}\right) / \widetilde{O}\left(\Lambda_{d}\right)$ is the moduli space of quasi-polarized degree-d K3 surfaces.

Question: \mathcal{D}_{d} versus $\Omega\left(\Lambda_{d}\right) / \widetilde{\mathrm{O}}\left(\Lambda_{d}\right)$?
d satisfies $(* *) \Leftrightarrow L_{d} \frac{\perp}{\cong} \Lambda_{d}(-1)$; in this case $\widetilde{\mathrm{O}}\left(L_{d}\right) \cong \widetilde{\mathrm{O}}\left(\Lambda_{d}(-1)\right)$.

Relation on the stack level

If d satisfies $(* *)$,
Question: what happens on the level of quotient domains and stacks?

- $\mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{pr}} \cong E_{8}(-1)^{\oplus 2} \oplus U^{\oplus 2} \oplus I_{1}(-d)=: \Lambda_{d}$;
- $\Omega\left(\Lambda_{d}\right) / \widetilde{O}\left(\Lambda_{d}\right)$ is the moduli space of quasi-polarized degree- d K3 surfaces.

Question: \mathcal{D}_{d} versus $\Omega\left(\Lambda_{d}\right) / \widetilde{\mathrm{O}}\left(\Lambda_{d}\right)$?
d satisfies $(* *) \Leftrightarrow L_{d}^{\perp} \cong \Lambda_{d}(-1)$; in this case $\widetilde{\mathrm{O}}\left(L_{d}^{\perp}\right) \cong \widetilde{\mathrm{O}}\left(\Lambda_{d}(-1)\right)$.
Tool: notions of marked and labelled GM fourfolds. Introduced by Hassett for cubic fourfolds.

Marked and labelled GM fourfolds (à la Hassett)

Definition

A marked GM fourfold is a Hodge-special GM fourfold X together with a primitive embedding $\varphi: L_{d} \hookrightarrow \mathrm{H}^{2,2}(X, \mathbb{Z})$ preserving the classes λ_{1} and λ_{2}. A labelled GM fourfold is a Hodge-special GM fourfold X together with a primitive sublattice $L_{d} \subset \mathrm{H}^{2,2}(X, \mathbb{Z})$.

Marked and labelled GM fourfolds (à la Hassett)

Definition

A marked GM fourfold is a Hodge-special GM fourfold X together with a primitive embedding $\varphi: L_{d} \hookrightarrow \mathrm{H}^{2,2}(X, \mathbb{Z})$ preserving the classes λ_{1} and λ_{2}. A labelled GM fourfold is a Hodge-special GM fourfold X together with a primitive sublattice $L_{d} \subset \mathrm{H}^{2,2}(X, \mathbb{Z})$.

Remark: Note that
$\{$ marked GM 4-folds $\} / \cong \rightarrow\{$ labelled GM 4-folds $\} / \cong$ $\left(X, \varphi: L_{d} \hookrightarrow \mathrm{H}^{2,2}(X, \mathbb{Z})\right) \mapsto\left(X, \varphi\left(L_{d}\right) \subset \mathrm{H}^{2,2}(X, \mathbb{Z})\right)$ is surjective, but need not to be injective.

Marked and labelled GM fourfolds (à la Hassett)

Definition

A marked GM fourfold is a Hodge-special GM fourfold X together with a primitive embedding $\varphi: L_{d} \hookrightarrow \mathrm{H}^{2,2}(X, \mathbb{Z})$ preserving the classes λ_{1} and λ_{2}. A labelled GM fourfold is a Hodge-special GM fourfold X together with a primitive sublattice $L_{d} \subset \mathrm{H}^{2,2}(X, \mathbb{Z})$.

Remark: Note that
$\{$ marked GM 4-folds $\} / \cong \rightarrow\{$ labelled GM 4-folds $\} / \cong$ $\left(X, \varphi: L_{d} \hookrightarrow \mathrm{H}^{2,2}(X, \mathbb{Z})\right) \mapsto\left(X, \varphi\left(L_{d}\right) \subset \mathrm{H}^{2,2}(X, \mathbb{Z})\right)$ is surjective, but need not to be injective.
Remember: $\widetilde{\mathrm{O}}\left(\Lambda_{00}\right) \cong\left\{g \in \mathrm{O}(\Lambda):\left.g\right|_{\left\langle\lambda_{1}, \lambda_{2}\right\rangle}=\mathrm{id}\right\}=: \Gamma$, so define

Marked and labelled GM fourfolds (à la Hassett)

Definition

A marked GM fourfold is a Hodge-special GM fourfold X together with a primitive embedding $\varphi: L_{d} \hookrightarrow \mathrm{H}^{2,2}(X, \mathbb{Z})$ preserving the classes λ_{1} and λ_{2}. A labelled GM fourfold is a Hodge-special GM fourfold X together with a primitive sublattice $L_{d} \subset \mathrm{H}^{2,2}(X, \mathbb{Z})$.

Remark: Note that
$\{$ marked GM 4-folds $\} / \cong \rightarrow\{$ labelled GM 4-folds $\} / \cong$ $\left(X, \varphi: L_{d} \hookrightarrow \mathrm{H}^{2,2}(X, \mathbb{Z})\right) \mapsto\left(X, \varphi\left(L_{d}\right) \subset \mathrm{H}^{2,2}(X, \mathbb{Z})\right)$ is surjective, but need not to be injective.
Remember: $\widetilde{O}\left(\Lambda_{00}\right) \cong\left\{g \in \mathrm{O}(\Lambda):\left.g\right|_{\left\langle\lambda_{1}, \lambda_{2}\right\rangle}=\mathrm{id}\right\}=: \Gamma$, so define

$$
G\left(L_{d}\right):=\left\{g \in \Gamma: g\left(L_{d}\right)=L_{d}\right\}
$$

Marked and labelled GM fourfolds (à la Hassett)

Definition

A marked GM fourfold is a Hodge-special GM fourfold X together with a primitive embedding $\varphi: L_{d} \hookrightarrow \mathrm{H}^{2,2}(X, \mathbb{Z})$ preserving the classes λ_{1} and λ_{2}. A labelled GM fourfold is a Hodge-special GM fourfold X together with a primitive sublattice $L_{d} \subset \mathrm{H}^{2,2}(X, \mathbb{Z})$.

Remark: Note that
$\{$ marked GM 4-folds $\} / \cong \rightarrow\{$ labelled GM 4-folds $\} / \cong$ $\left(X, \varphi: L_{d} \hookrightarrow \mathrm{H}^{2,2}(X, \mathbb{Z})\right) \mapsto\left(X, \varphi\left(L_{d}\right) \subset \mathrm{H}^{2,2}(X, \mathbb{Z})\right)$ is surjective, but need not to be injective.
Remember: $\widetilde{\mathrm{O}}\left(\Lambda_{00}\right) \cong\left\{g \in \mathrm{O}(\Lambda):\left.g\right|_{\left\langle\lambda_{1}, \lambda_{2}\right\rangle}=\mathrm{id}\right\}=: \Gamma$, so define

$$
\begin{aligned}
& G\left(L_{d}\right):=\left\{g \in \Gamma: g\left(L_{d}\right)=L_{d}\right\} \\
& H\left(L_{d}\right):=\left\{g \in G\left(L_{d}\right):\left.g\right|_{L_{d}}=\operatorname{id}_{L_{d}}\right\} \cong \widetilde{O}\left(L_{d}\right)
\end{aligned}
$$

Marked and labelled GM fourfolds (à la Hassett)

Definition

A marked GM fourfold is a Hodge-special GM fourfold X together with a primitive embedding $\varphi: L_{d} \hookrightarrow \mathrm{H}^{2,2}(X, \mathbb{Z})$ preserving the classes λ_{1} and λ_{2}. A labelled GM fourfold is a Hodge-special GM fourfold X together with a primitive sublattice $L_{d} \subset \mathrm{H}^{2,2}(X, \mathbb{Z})$.

Remark: Note that
$\{$ marked GM 4-folds $\} / \cong \rightarrow\{$ labelled GM 4-folds $\} / \cong$ $\left(X, \varphi: L_{d} \hookrightarrow \mathrm{H}^{2,2}(X, \mathbb{Z})\right) \mapsto\left(X, \varphi\left(L_{d}\right) \subset \mathrm{H}^{2,2}(X, \mathbb{Z})\right)$ is surjective, but need not to be injective.
Remember: $\widetilde{\mathrm{O}}\left(\Lambda_{00}\right) \cong\left\{g \in \mathrm{O}(\Lambda):\left.g\right|_{\left\langle\lambda_{1}, \lambda_{2}\right\rangle}=\mathrm{id}\right\}=: \Gamma$, so define $G\left(L_{d}\right):=\left\{g \in \Gamma: g\left(L_{d}\right)=L_{d}\right\}$, $H\left(L_{d}\right):=\left\{g \in G\left(L_{d}\right):\left.g\right|_{L_{d}}=\operatorname{id}_{L_{d}}\right\} \cong \widetilde{O}\left(L_{d}\right)$

$$
\mathcal{D}_{L_{d}}^{\mathrm{mar}}:=\Omega\left(L_{d} \frac{1}{}\right) / H\left(L_{d}\right), \quad \mathcal{D}_{L_{d}}^{\mathrm{ab}}:=\Omega\left(L_{d}^{1}\right) / G\left(L_{d}\right)
$$

Stacks of marked and labelled GM fourfolds

Remark $\quad \Rightarrow \quad \mathcal{D}_{L_{d}}^{\text {mar }} \rightarrow \mathcal{D}_{L_{d}}^{\text {lab }}$

Stacks of marked and labelled GM fourfolds

Remark $\quad \Rightarrow \quad \mathcal{D}_{L_{d}}^{\text {mar }} \rightarrow \mathcal{D}_{L_{d}}^{\text {lab }}$

- = lab, mar

Stacks of marked and labelled GM fourfolds

Remark $\quad \Rightarrow \quad \mathcal{D}_{L_{d}}^{\text {mar }} \rightarrow \mathcal{D}_{L_{d}}^{\text {lab }}$

- = lab, mar

$$
\mathcal{D}_{d}^{\bullet}:=\mathcal{D}_{L_{d}}^{\bullet} \text { if } d \equiv 0 \bmod 4
$$

Stacks of marked and labelled GM fourfolds

Remark $\quad \Rightarrow \quad \mathcal{D}_{L_{d}}^{\text {mar }} \rightarrow \mathcal{D}_{L_{d}}^{\text {lab }}$
\bullet = lab, mar

$$
\mathcal{D}_{d}^{\bullet}:=\mathcal{D}_{L_{d}}^{\bullet} \text { if } d \equiv 0 \bmod 4
$$

When $d \equiv 2 \bmod 8$, we have two embeddings $\mathcal{D}_{L_{d}} \cong \mathcal{D}_{d}^{\prime} \subset \mathcal{D}$ and $\mathcal{D}_{L_{d}} \xrightarrow{\cong} \mathcal{D}_{d}^{\prime \prime} \subset \mathcal{D}$; let $\left(\mathcal{D}_{d}^{\prime}\right)^{\bullet}$ and $\left(\mathcal{D}_{d}^{\prime \prime}\right)^{\bullet}$ be the corresponding spaces $\mathcal{D}_{L_{d}}^{\bullet}$ over \mathcal{D}_{d}^{\prime} and $\mathcal{D}_{d}^{\prime \prime}$, respectively.

$$
\mathcal{D}_{d}^{\bullet}:=\left(\mathcal{D}_{d}^{\prime}\right)^{\bullet} \amalg\left(\mathcal{D}_{d}^{\prime \prime}\right) \bullet \text { if } d \equiv 2 \bmod 8
$$

Stacks of marked and labelled GM fourfolds

Remark $\quad \Rightarrow \quad \mathcal{D}_{L_{d}}^{\text {mar }} \rightarrow \mathcal{D}_{L_{d}}^{\text {lab }}$
\bullet = lab, mar
$\mathcal{D}_{d}^{\bullet}:=\mathcal{D}_{L_{d}}^{\bullet}$ if $d \equiv 0 \bmod 4$.
When $d \equiv 2 \bmod 8$, we have two embeddings $\mathcal{D}_{L_{d}} \xlongequal{\cong} \mathcal{D}_{d}^{\prime} \subset \mathcal{D}$ and $\mathcal{D}_{L_{d}} \xrightarrow{\cong} \mathcal{D}_{d}^{\prime \prime} \subset \mathcal{D}$; let $\left(\mathcal{D}_{d}^{\prime}\right)^{\bullet}$ and $\left(\mathcal{D}_{d}^{\prime \prime}\right)^{\bullet}$ be the corresponding spaces $\mathcal{D}_{L_{d}}^{\bullet}$ over \mathcal{D}_{d}^{\prime} and $\mathcal{D}_{d}^{\prime \prime}$, respectively.

$$
\mathcal{D}_{d}^{\bullet}:=\left(\mathcal{D}_{d}^{\prime}\right)^{\bullet} \coprod\left(\mathcal{D}_{d}^{\prime \prime}\right)^{\bullet} \text { if } d \equiv 2 \bmod 8
$$

Definition

The moduli stacks of marked and labelled GM fourfolds of discriminant d are $\mathcal{M}_{4} \times_{\mathcal{D}} \mathcal{D}_{d}^{\text {mar }}$ and $\mathcal{M}_{4} \times_{\mathcal{D}} \mathcal{D}_{d}^{\text {lab }}$.

Stacks of marked and labelled GM fourfolds

Remark $\quad \Rightarrow \quad \mathcal{D}_{L_{d}}^{\text {mar }} \rightarrow \mathcal{D}_{L_{d}}^{\text {lab }}$
\bullet = lab, mar
$\mathcal{D}_{d}^{\bullet}:=\mathcal{D}_{L_{d}}^{\bullet}$ if $d \equiv 0 \bmod 4$.
When $d \equiv 2 \bmod 8$, we have two embeddings $\mathcal{D}_{L_{d}} \xlongequal{\cong} \mathcal{D}_{d}^{\prime} \subset \mathcal{D}$ and $\mathcal{D}_{L_{d}} \xrightarrow{\cong} \mathcal{D}_{d}^{\prime \prime} \subset \mathcal{D}$; let $\left(\mathcal{D}_{d}^{\prime}\right)^{\bullet}$ and $\left(\mathcal{D}_{d}^{\prime \prime}\right)^{\bullet}$ be the corresponding spaces $\mathcal{D}_{L_{d}}^{\bullet}$ over \mathcal{D}_{d}^{\prime} and $\mathcal{D}_{d}^{\prime \prime}$, respectively.

$$
\mathcal{D}_{d}^{\bullet}:=\left(\mathcal{D}_{d}^{\prime}\right)^{\bullet} \coprod\left(\mathcal{D}_{d}^{\prime \prime}\right)^{\bullet} \text { if } d \equiv 2 \bmod 8
$$

Definition

The moduli stacks of marked and labelled GM fourfolds of discriminant d are $\mathcal{M}_{4} \times_{\mathcal{D}} \mathcal{D}_{d}^{\text {mar }}$ and $\mathcal{M}_{4} \times_{\mathcal{D}} \mathcal{D}_{d}^{\text {lab }}$.

$$
\mathcal{D}_{L_{d}}^{\mathrm{mar}} \rightarrow \mathcal{D}_{L_{d}}^{\mathrm{lab}} \rightarrow \mathcal{D}_{L_{d}} \subset \mathcal{D}
$$

Main results

Theorem (Brakkee, P.)

The map $\mathcal{D}_{L_{d}}^{m a r} \rightarrow \mathcal{D}_{L_{d}}^{\text {lab }}$ is an isomorphism. As a consequence, $\mathcal{M}_{4} \times{ }_{\mathcal{D}} \mathcal{D}_{d}^{\text {mar }} \cong \mathcal{M}_{4} \times{ }_{\mathcal{D}} \mathcal{D}_{d}^{\text {lab }}$.

Main results

Theorem (Brakkee, P.)
The map $\mathcal{D}_{L_{d}}^{\text {mar }} \rightarrow \mathcal{D}_{L_{d}}^{\text {lab }}$ is an isomorphism.
As a consequence, $\mathcal{M}_{4} \times{ }_{\mathcal{D}} \mathcal{D}_{d}^{\text {mar }} \cong \mathcal{M}_{4} \times \mathcal{D} \mathcal{D}_{d}^{\text {lab }}$.

Corollary

For every d satisfying $(* *)$, there is a rational map $\gamma_{d}: \mathcal{M}_{4} \times_{\mathcal{D}} \mathcal{D}_{d} \rightarrow \Omega\left(\Lambda_{d}\right) / \widetilde{O}\left(\Lambda_{d}\right)$.

Main results

Theorem (Brakkee, P.)

The map $\mathcal{D}_{L_{d}}^{\text {mar }} \rightarrow \mathcal{D}_{L_{d}}^{\text {lab }}$ is an isomorphism.
As a consequence, $\mathcal{M}_{4} \times_{\mathcal{D}} \mathcal{D}_{d}^{\text {mar }} \cong \mathcal{M}_{4} \times \mathcal{D} \mathcal{D}_{d}^{\text {lab }}$.

Corollary

For every d satisfying ($* *$), there is a rational map $\gamma_{d}: \mathcal{M}_{4} \times_{\mathcal{D}} \mathcal{D}_{d} \rightarrow \Omega\left(\Lambda_{d}\right) / \widetilde{O}\left(\Lambda_{d}\right)$.

Indeed,

$$
\begin{aligned}
& \Omega\left(\Lambda_{d}(-1)\right) \longrightarrow \Omega\left(L_{d}^{\perp}\right) \longleftrightarrow \Omega\left(\Lambda_{00}\right) \\
& \downarrow \downarrow \\
& \Omega\left(\Lambda_{d}(-1)\right) / \widetilde{\mathrm{O}}\left(\Lambda_{d}(-1)\right) \xrightarrow{\cong} \Omega\left(L_{d}^{\perp}\right) / H\left(L_{d}\right) \cong \mathcal{D}_{L_{d}}^{\downarrow \mathrm{lab}} \longrightarrow \mathcal{D}_{L_{d}} \hookrightarrow \stackrel{\downarrow}{\mathcal{D}}
\end{aligned}
$$

Comments

- $\mathcal{D}_{d} \rightarrow \Omega\left(\Lambda_{d}\right) / \widetilde{O}\left(\Lambda_{d}\right)$ is birational for $d \equiv 0 \bmod 4$, generically two-to-one if $d \equiv 2 \bmod 8$.

Comments

- $\mathcal{D}_{d} \rightarrow \Omega\left(\Lambda_{d}\right) / \widetilde{O}\left(\Lambda_{d}\right)$ is birational for $d \equiv 0 \bmod 4$, generically two-to-one if $d \equiv 2 \bmod 8$.
- γ_{d} is not unique;

Comments

- $\mathcal{D}_{d} \longrightarrow \Omega\left(\Lambda_{d}\right) / \widetilde{\mathrm{O}}\left(\Lambda_{d}\right)$ is birational for $d \equiv 0 \bmod 4$, generically two-to-one if $d \equiv 2 \bmod 8$.
- γ_{d} is not unique;
- Analogous statement for GM fourfolds having an associated twisted K3 surface:
- X has associated twisted K3 surface

$$
\Leftrightarrow d^{\prime}=\prod_{i} p_{i}^{n_{i}} \text { with } n_{i} \equiv 0 \bmod 2 \text { for } p_{i} \equiv 3 \bmod 4(\mathrm{P} .) ;
$$

Comments

- $\mathcal{D}_{d} \longrightarrow \Omega\left(\Lambda_{d}\right) / \widetilde{\mathrm{O}}\left(\Lambda_{d}\right)$ is birational for $d \equiv 0 \bmod 4$, generically two-to-one if $d \equiv 2 \bmod 8$.
- γ_{d} is not unique;
- Analogous statement for GM fourfolds having an associated twisted K3 surface:
- X has associated twisted K3 surface $\Leftrightarrow d^{\prime}=\prod_{i} p_{i}^{n_{i}}$ with $n_{i} \equiv 0 \bmod 2$ for $p_{i} \equiv 3 \bmod 4$ (P.);
- use moduli spaces of polarized twisted K3 surfaces with fixed degree and order (Brakkee).

Comments

- $\mathcal{D}_{d} \longrightarrow \Omega\left(\Lambda_{d}\right) / \widetilde{\mathrm{O}}\left(\Lambda_{d}\right)$ is birational for $d \equiv 0 \bmod 4$, generically two-to-one if $d \equiv 2 \bmod 8$.
- γ_{d} is not unique;
- Analogous statement for GM fourfolds having an associated twisted K3 surface:
- X has associated twisted K3 surface $\Leftrightarrow d^{\prime}=\prod_{i} p_{i}^{n_{i}}$ with $n_{i} \equiv 0 \bmod 2$ for $p_{i} \equiv 3 \bmod 4$ (P.);
- use moduli spaces of polarized twisted K3 surfaces with fixed degree and order (Brakkee).
- Third difference with cubic fourfolds:
- $\mathcal{D}_{L_{d}}^{\text {mar }} \rightarrow \mathcal{D}_{L_{d}}^{\text {ab }}$ is isomorphism or two-to-one cover (Hassett).

Comments

- $\mathcal{D}_{d} \longrightarrow \Omega\left(\Lambda_{d}\right) / \widetilde{\mathrm{O}}\left(\Lambda_{d}\right)$ is birational for $d \equiv 0 \bmod 4$, generically two-to-one if $d \equiv 2 \bmod 8$.
- γ_{d} is not unique;
- Analogous statement for GM fourfolds having an associated twisted K3 surface:
- X has associated twisted K3 surface $\Leftrightarrow d^{\prime}=\prod_{i} p_{i}^{n_{i}}$ with $n_{i} \equiv 0 \bmod 2$ for $p_{i} \equiv 3 \bmod 4$ (P.);
- use moduli spaces of polarized twisted K3 surfaces with fixed degree and order (Brakkee).
- Third difference with cubic fourfolds:
- $\mathcal{D}_{L_{d}}^{\text {mar }} \rightarrow \mathcal{D}_{L_{d}}^{\text {ab }}$ is isomorphism or two-to-one cover (Hassett).
- In the second case, there are "two" K3 surfaces, one is a moduli space of stable sheaves on the other (Brakkee).

Derived category of GM fourfolds

Proposition (Kuznetsov, Perry)

$$
\mathrm{D}^{\mathrm{b}}(X)=\left\langle\mathrm{Ku}(X), \mathcal{O}_{X}, \mathcal{U}_{X}^{*}, \mathcal{O}_{X}(1), \mathcal{U}_{X}^{*}(1)\right\rangle
$$

Derived category of GM fourfolds

Proposition (Kuznetsov, Perry)

$$
\mathrm{D}^{\mathrm{b}}(X)=\left\langle\mathrm{Ku}(X), \mathcal{O}_{x}, \mathcal{U}_{X}^{*}, \mathcal{O}_{X}(1), \mathcal{U}_{X}^{*}(1)\right\rangle
$$

The Kuznetsov component of X is

$$
\begin{aligned}
& \mathrm{Ku}(X):=\left\{E \in \mathrm{D}^{b}(X): \operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}(i), E\right)=0,\right. \\
& \\
& \left.\operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{U}_{X}^{*}(i), E\right)=0 \text { for all } i=0,1\right\} .
\end{aligned}
$$

Derived category of GM fourfolds

Proposition (Kuznetsov, Perry)

$$
\mathrm{D}^{\mathrm{b}}(X)=\left\langle\mathrm{Ku}(X), \mathcal{O}_{X}, \mathcal{U}_{X}^{*}, \mathcal{O}_{X}(1), \mathcal{U}_{X}^{*}(1)\right\rangle
$$

The Kuznetsov component of X is

$$
\begin{aligned}
& \operatorname{Ku}(X):=\left\{E \in \mathrm{D}^{b}(X): \operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}(i), E\right)=0\right. \\
& \\
& \left.\operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{U}_{X}^{*}(i), E\right)=0 \text { for all } i=0,1\right\} .
\end{aligned}
$$

Key property:
$\mathrm{Ku}(X)$ is a subcategory of K 3 type: it has the same Serre functor and same Hochschild homology of $\mathrm{D}^{b}(S)$, where S is a K3 surface.

Derived category of GM fourfolds

Proposition (Kuznetsov, Perry)

$$
\mathrm{D}^{\mathrm{b}}(X)=\left\langle\mathrm{Ku}(X), \mathcal{O}_{X}, \mathcal{U}_{X}^{*}, \mathcal{O}_{X}(1), \mathcal{U}_{X}^{*}(1)\right\rangle
$$

The Kuznetsov component of X is

$$
\begin{aligned}
& \operatorname{Ku}(X):=\left\{E \in \mathrm{D}^{b}(X): \operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}(i), E\right)=0,\right. \\
& \\
& \left.\operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{U}_{X}^{*}(i), E\right)=0 \text { for all } i=0,1\right\} .
\end{aligned}
$$

Key property:
$\mathrm{Ku}(X)$ is a subcategory of K 3 type: it has the same Serre functor and same Hochschild homology of $\mathrm{D}^{b}(S)$, where S is a K3 surface.

Definition

X has a homological associated K 3 surface if $\mathrm{Ku}(X) \simeq \mathrm{D}^{b}(S)$ for a K3 surface S.

Application to FM partners

Definition

A GM fourfold X^{\prime} is a Fourier-Mukai partner of X if there exists an exact equivalence $\mathrm{Ku}(X) \simeq \mathrm{Ku}\left(X^{\prime}\right)$ of Fourier-Mukai type.

Application to FM partners

Definition

A GM fourfold X^{\prime} is a Fourier-Mukai partner of X if there exists an exact equivalence $\mathrm{Ku}(X) \simeq \mathrm{Ku}\left(X^{\prime}\right)$ of Fourier-Mukai type.

Kuznetsov, Perry

Non-isomorphic GM fourfolds in the same fiber of the period map are FM partners. So Categorical Torelli Theorem does not hold for GM fourfolds.

Application to FM partners

Definition

A GM fourfold X^{\prime} is a Fourier-Mukai partner of X if there exists an exact equivalence $\mathrm{Ku}(X) \simeq \mathrm{Ku}\left(X^{\prime}\right)$ of Fourier-Mukai type.

Kuznetsov, Perry

Non-isomorphic GM fourfolds in the same fiber of the period map are FM partners. So Categorical Torelli Theorem does not hold for GM fourfolds.

Theorem (Brakkee, P.)

Let X be very general in $\mathcal{M}_{4} \times{ }_{\mathcal{D}} \mathcal{D}_{d}$ with d satisfying (**). Let $\tau(d)$ be the number of distinct primes that divide $d / 2$. Then when $d \equiv 4 \bmod 8($ resp. $d \equiv 2 \bmod 8)$, there are $2^{\tau(d)-1}\left(\right.$ resp. $\left.2^{\tau(d)}\right)$ fibers of the period map such that, when non-empty, their elements are FM partners of X. Moreover, all FM partners of X are obtained in this way.

Comments

- Analogous result for cubic fourfolds (P. and Fan, Lai 2020).

Comments

- Analogous result for cubic fourfolds (P. and Fan, Lai 2020).
- We prove a similar statement in the case of associated twisted K3 surface.

For the proof we use:

Comments

- Analogous result for cubic fourfolds (P. and Fan, Lai 2020).
- We prove a similar statement in the case of associated twisted K3 surface.

For the proof we use:

- the rational map $\gamma_{d}: \mathcal{M}_{4} \times{ }_{\mathcal{D}} \mathcal{D}_{d} \rightarrow \Omega\left(\Lambda_{d}\right) / \widetilde{\mathrm{O}}\left(\Lambda_{d}\right)$;

K3 surface if and only if
surface (Perry, P., Zhao).

Comments

- Analogous result for cubic fourfolds (P. and Fan, Lai 2020).
- We prove a similar statement in the case of associated twisted K3 surface.
For the proof we use:
- the rational map $\gamma_{d}: \mathcal{M}_{4} \times{ }_{\mathcal{D}} \mathcal{D}_{d} \rightarrow \Omega\left(\Lambda_{d}\right) / \widetilde{\mathrm{O}}\left(\Lambda_{d}\right)$;
- if X very general in $\mathcal{M}_{4} \times_{\mathcal{D}} \mathcal{D}_{d}$, then X has Hodge associated K3 surface if and only if X has homological associated K3 surface (Perry, P., Zhao).

Comments

- Analogous result for cubic fourfolds (P. and Fan, Lai 2020).
- We prove a similar statement in the case of associated twisted K3 surface.
For the proof we use:
- the rational map $\gamma_{d}: \mathcal{M}_{4} \times_{\mathcal{D}} \mathcal{D}_{d} \rightarrow \Omega\left(\Lambda_{d}\right) / \widetilde{\mathrm{O}}\left(\Lambda_{d}\right)$;
- if X very general in $\mathcal{M}_{4} \times{ }_{\mathcal{D}} \mathcal{D}_{d}$, then X has Hodge associated K3 surface if and only if X has homological associated K3 surface (Perry, P., Zhao).
Fourth difference with cubic fourfolds, where these notions are equivalent (Addington, Thomas and Bayer, Lahoz, Macrì, Nuer, Perry, Stellari).

Comments

- Analogous result for cubic fourfolds (P. and Fan, Lai 2020).
- We prove a similar statement in the case of associated twisted K3 surface.

For the proof we use:

- the rational map $\gamma_{d}: \mathcal{M}_{4} \times{ }_{\mathcal{D}} \mathcal{D}_{d} \rightarrow \Omega\left(\Lambda_{d}\right) / \widetilde{\mathrm{O}}\left(\Lambda_{d}\right)$;
- if X very general in $\mathcal{M}_{4} \times{ }_{\mathcal{D}} \mathcal{D}_{d}$, then X has Hodge associated K3 surface if and only if X has homological associated K3 surface (Perry, P., Zhao).
Fourth difference with cubic fourfolds, where these notions are equivalent (Addington, Thomas and Bayer, Lahoz, Macrì, Nuer, Perry, Stellari).

If X has a Hodge-associated K3 surfaces, then X has a homological associated K3 surface, but there are counterexamples to the inverse statement (P. + Perry, P., Zhao).

Coda on open questions

Conjecture (Debarre, Iliev, Manivel)

$$
\operatorname{Im}(p)=\mathcal{D} \backslash\left(\mathcal{D}_{2} \cup \mathcal{D}_{4} \cup \mathcal{D}_{8}\right) ?
$$

Coda on open questions

Conjecture (Debarre, Iliev, Manivel)

$$
\operatorname{Im}(p)=\mathcal{D} \backslash\left(\mathcal{D}_{2} \cup \mathcal{D}_{4} \cup \mathcal{D}_{8}\right) ?
$$

- For cubic fourfolds $\operatorname{Im}(p)=\mathcal{D} \backslash\left(\mathcal{D}_{2} \cup \mathcal{D}_{6}\right)$ (Laza, Looijenga).

Coda on open questions

Conjecture (Debarre, Iliev, Manivel)

$$
\operatorname{Im}(p)=\mathcal{D} \backslash\left(\mathcal{D}_{2} \cup \mathcal{D}_{4} \cup \mathcal{D}_{8}\right) ?
$$

- For cubic fourfolds $\operatorname{Im}(p)=\mathcal{D} \backslash\left(\mathcal{D}_{2} \cup \mathcal{D}_{6}\right)$ (Laza, Looijenga).
- Suggestion of Macrì: try to use stability conditions, recovering the GM fourfold inside a moduli space of Bridgeland stable objects in $\operatorname{Ku}(X)$.

[^0]: The moduli stack of GM fourfolds of discriminant d is

