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@ Hodge theory for Gushel-Mukai fourfolds;
@ Associated K3 surface and main results;

© Application to Fourier-Mukai partners.
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Gushel-Mukai fourfolds

We work over C. Let V5 be a 5-dimensional C-vector space.
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Gushel-Mukai fourfolds

We work over C. Let V5 be a 5-dimensional C-vector space.
Consider:
o Gr(2, V5) C P(A? Vs) = PP via Pliicker embedding;
@ the cone over the Grassmannian Gr(2, V5) with vertex
v :=P(C)
CGr(2, Vs) C P(C & A? Vs) = PLO;
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We work over C. Let V5 be a 5-dimensional C-vector space.
Consider:

o Gr(2, V5) C P(A? Vs) = PP via Pliicker embedding;

@ the cone over the Grassmannian Gr(2, V5) with vertex
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Gushel-Mukai fourfolds

We work over C. Let V5 be a 5-dimensional C-vector space.
Consider:

o Gr(2, V5) C P(A? Vs) = PP via Pliicker embedding;
@ the cone over the Grassmannian Gr(2, V5) with vertex
v :=P(C)
CGr(2, V5) C P(C & A? Vs) = P10,
o P(W) =P8 Cc P(Co® A? Vs);
@ a quadric hypersurface Q C P(W).
Definition
A Gushel-Mukai (GM) fourfold is a smooth four-dimensional

intersection
X =CGr(2, V5) N Q.
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Gushel-Mukai fourfolds

We work over C. Let V5 be a 5-dimensional C-vector space.
Consider:

o Gr(2, V5) C P(A? Vs) = PP via Pliicker embedding;
@ the cone over the Grassmannian Gr(2, V5) with vertex
v :=P(C)
CGr(2, V5) C P(C & A? Vs) = P10,
o P(W) =P8 Cc P(Co® A? Vs);
@ a quadric hypersurface Q C P(W).

Definition
A Gushel-Mukai (GM) fourfold is a smooth four-dimensional

intersection
X =CGr(2, V5) N Q.

If H C X is the hyperplane class, then H* = 10 and Kx = —2H.
Thus X is a Fano fourfold.
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GM fourfolds were firstly studied by:

@ Debarre, lliev, Manivel and Debarre, Kuznetsov from the
Hodge-theoretical view point;

@ Kuznetsov, Perry from the derived category view point.
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Leitmotiv
Analogy with cubic fourfolds.

GM fourfolds are “related” to K3 surfaces and give rise to a rich
hyperkahler geometry.
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GM fourfolds were firstly studied by:

@ Debarre, lliev, Manivel and Debarre, Kuznetsov from the
Hodge-theoretical view point;

@ Kuznetsov, Perry from the derived category view point.

Leitmotiv
Analogy with cubic fourfolds.

GM fourfolds are “related” to K3 surfaces and give rise to a rich
hyperkahler geometry.

Explain better the connection with K3 surfaces on the level of
period domains and moduli stacks/spaces ~~ arises a difference
with cubic fourfolds.
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Interlude on lattices

Given a lattice L,

@ Disc L := LV /L is the discriminant group of L;
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Interlude on lattices
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@ Disc L := LV /L is the discriminant group of L;
@ the discriminant of L is the order of Disc L;
o O(L) := Ker(O(L) — O(Disc L)) is the stable orthogonal
group of L;
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Interlude on lattices

Given a lattice L,
@ DiscL := LV/L is the discriminant group of L;
@ the discriminant of L is the order of Disc L;
o O(L) := Ker(O(L) — O(Disc L)) is the stable orthogonal
group of L;
@ given m # 0 € Z, L(m) is the lattice L with the intersection
form multiplied by m.

Laura Pertusi Marked and labelled Gushel-Mukai fourfolds 5/20



Interlude on lattices

Given a lattice L,
@ DiscL := LV/L is the discriminant group of L;
@ the discriminant of L is the order of Disc L;
o O(L) := Ker(O(L) — O(Disc L)) is the stable orthogonal
group of L;
@ given m # 0 € Z, L(m) is the lattice L with the intersection
form multiplied by m.

Examples
o h=(%(1))
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Interlude on lattices

Given a lattice L,
@ DiscL := LV/L is the discriminant group of L;
@ the discriminant of L is the order of Disc L;
o O(L) := Ker(O(L) — O(Disc L)) is the stable orthogonal
group of L;
@ given m # 0 € Z, L(m) is the lattice L with the intersection
form multiplied by m.

Examples
o L =(Z,(1));
(*] A1 = /1(2);
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Interlude on lattices

Given a lattice L,
@ DiscL := LV/L is the discriminant group of L;
@ the discriminant of L is the order of Disc L;
o O(L) := Ker(O(L) — O(Disc L)) is the stable orthogonal
group of L;
@ given m # 0 € Z, L(m) is the lattice L with the intersection
form multiplied by m.

Examples
o L =(Z,(1));
(*] A1 = /1(2);

o U= (Z%2,(9})) is the hyperbolic plane;
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Interlude on lattices

Given a lattice L,
@ DiscL := LV/L is the discriminant group of L;
@ the discriminant of L is the order of Disc L;
o O(L) := Ker(O(L) — O(Disc L)) is the stable orthogonal
group of L;
@ given m # 0 € Z, L(m) is the lattice L with the intersection
form multiplied by m.

Examples
o L =(Z,(1));
(*] A1 = /1(2);

o U= (Z%2,(9})) is the hyperbolic plane;

@ Eg is the unique even unimodular lattice of signature (8,0).
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Hodge theory for GM4 (Debarre, lliev, Manivel)

Hodge diamond of X (lliev, Manivel):

1
0 0
0 1 0
0 0 0 0
0 1 22 1 0
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Hodge theory for GM4 (Debarre, lliev, Manivel)
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Let vx : X — Gr(2, V5) be the linear projection from the vertex.
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Hodge theory for GM4 (Debarre, lliev, Manivel)

Hodge diamond of X (lliev, Manivel):

1
0 0
0 1 0
0 0 0 0
0 1 22 1 0.

Let vx : X — Gr(2, V5) be the linear projection from the vertex.
Remark: v¥: H*(Gr(2, V), Z) = (0%, 011) — H*(X,Z).
Definition

The vanishing lattice of X is the sublattice

HY(X, Z)yan = {X € HY(X,Z) : x - v (H*(Gr(2, V5),Z)) = 0}.
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Hodge theory for GM4 (Debarre, lliev, Manivel)

Hodge diamond of X (lliev, Manivel):

1
0 0
0 1 0
0 0 0 0
0 1 22 1 0.

Let vx : X — Gr(2, V5) be the linear projection from the vertex.
Remark: v¥: H*(Gr(2, V), Z) = (0%, 011) — H*(X,Z).

Definition

The vanishing lattice of X is the sublattice
HY(X, Z)van := {x € HY(X,Z) : x - v%(H*(Gr(2, V5), Z)) = 0}.

o HY(X,Z) =2 1922 3 |(—-1)92 =: A
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Hodge theory for GM4 (Debarre, lliev, Manivel)

Hodge diamond of X (lliev, Manivel):

1
0 0
0 1 0
0 0 0 0
0 1 22 1 0.

Let vx : X — Gr(2, V5) be the linear projection from the vertex.
Remark: v¥: H*(Gr(2, V), Z) = (0%, 011) — H*(X,Z).
Definition

The vanishing lattice of X is the sublattice

HY(X, Z)yan = {X € HY(X,Z) : x - v (H*(Gr(2, V5),Z)) = 0}.

(] H4(X,Z) =~ I@22 (o) I(—l)@2 = /\;
0 HY(X,Z)yan = EZ% @ UP2 @ AT =: Ago;
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Hodge theory for GM4 (Debarre, lliev, Manivel)

Hodge diamond of X (lliev, Manivel):

1
0 0
0 1 0
0 0 0 0
0 1 22 1 0.

Let vx : X — Gr(2, V5) be the linear projection from the vertex.
Remark: v¥: H*(Gr(2, V), Z) = (0%, 011) — H*(X,Z).

Definition

The vanishing lattice of X is the sublattice
HY(X, Z)van := {x € HY(X,Z) : x - v%(H*(Gr(2, V5), Z)) = 0}.

o HY(X,Z) =2 1922 3 |(—-1)92 =: A
o HY(X,Z)van = EF? ® U2 @ AT? =: Ngo;
o Vi (H*(Gr(2, V5),Z) = Agy C A and Agy = AT? = (A1, \a).
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Period domain and period map

The period domain of GM fourfolds is
Q(Ago) == {w e P(Ap®C) :w-w =0,w-w < 0}.
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Period domain and period map

The period domain of GM fourfolds is
Q(Ago) :={w € PNAgo®C) : w-w =0,w-w < 0}.
O(Ago) acts properly discontinuously on Q(Ago)
~ D := Q(Noo)/O(Moo)
is an irreducible quasi-projective variety of dimension 20.
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Q(Ago) :={w € PNAgo®C) : w-w =0,w-w < 0}.
O(Ago) acts properly discontinuously on Q(Ago)
~ D := Q(Noo)/O(Moo)
is an irreducible quasi-projective variety of dimension 20.
The period map is

p: My =D, [X]— [H¥HX)]

where My is the moduli stack of GM fourfolds.
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Period domain and period map

The period domain of GM fourfolds is
N Q(Ago) :={w € PNAgo®C) : w-w =0,w-w < 0}.
O(Aoo) acts properly discontinuously on €(Ago)

~ D := Q(Noo)/O(Moo)
is an irreducible quasi-projective variety of dimension 20.
The period map is

p: My =D, [X]— [H¥HX)]

where My is the moduli stack of GM fourfolds.

Proposition (Debarre, lliev, Manivel)

p Is dominant as a map of stacks with smooth 4-dimensional fibers.

First difference with cubic fourfolds, whose period map is injective!
Torelli Theorem does not hold for GM fourfolds.
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Special GM fourfolds

A very general GM fourfold X satisfies rk H>2(X,Z) = 2.
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Special GM fourfolds

A very general GM fourfold X satisfies rk H>2(X,Z) = 2.
Definition
A GM fourfold X is Hodge-special if rkH>2(X,Z) > 3.

Period points of Hodge-special GM fourfolds lie in codimension-1
Noether—Lefschetz loci in D:
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Special GM fourfolds

A very general GM fourfold X satisfies rk H»?(X,Z) = 2.
Definition
A GM fourfold X is Hodge-special if rkH>2(X,Z) > 3.

Period points of Hodge-special GM fourfolds lie in codimension-1
Noether—Lefschetz loci in D:

@ For a primitive sublattice Ly C A of rank 3 and discriminant d
containing A1, A», define

Q(LF) :=P(Ly ® C) N Q(Ago)

where L7 is the orthogonal complement of Ly in A.
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Special GM fourfolds

A very general GM fourfold X satisfies rk H»?(X,Z) = 2.
Definition
A GM fourfold X is Hodge-special if rkH>2(X,Z) > 3.

Period points of Hodge-special GM fourfolds lie in codimension-1
Noether—Lefschetz loci in D:
@ For a primitive sublattice Ly C A of rank 3 and discriminant d
containing A1, A», define
Q(LY) = P(Ly © C) N Q(Aw)

where L7 is the orthogonal complement of Ly in A.
o Let

DLd cD
be the image of Q(LJ) under the map Q(Ago) — D.
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Special GM fourfolds

A very general GM fourfold X satisfies rk H»?(X,Z) = 2.
Definition
A GM fourfold X is Hodge-special if rkH>2(X,Z) > 3.

Period points of Hodge-special GM fourfolds lie in codimension-1
Noether—Lefschetz loci in D:

@ For a primitive sublattice Ly C A of rank 3 and discriminant d
containing A1, A», define

Q(LF) :=P(Ly ® C) N Q(Ago)

where L7 is the orthogonal complement of Ly in A.
o Let
DLd cD
be the image of Q(LJ) under the map Q(Ago) — D.
The period of any Hodge-special GM fourfold lies in D, for some
Ly,

Laura Pertusi Marked and labelled Gushel-Mukai fourfolds 8/20



Properties (Debarre, lliev, Manivel)

e D,#0 < d=0,2,4 (mod 8).
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Properties (Debarre, lliev, Manivel)

e D, #0 < d=0,2,4 (mod 8).
@ Up to the action of 6(/\00), Ly =

2.0 0
02 0| ifd=sk,
0 0 2k

2
1 2 0 O
0 or 02 1 if d =2+ 8k,
2k 0 1 2k

2 0
0 2 if d =4+ 8k.
11

o NN O

—
= O DN

1
1

2k
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Properties (Debarre, lliev, Manivel)

e D,#0 < d=0,2,4 (mod 8).
@ Up to the action of 6(/\00), Ly =

o There exists an involution r € O(Agg) which is not in O(Ago),
such that r(A1) = A2, exchanging the two embeddings of Ly in

A.
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Stacks of Hodge-special GM fourfolds

Summary

Periods of Hodge-special GM fourfolds are contained in the union
of

@ irreducible hypersurfaces Dy C D for all d =0 mod 4,

o the unions Dy := D!, U D} of irreducible hypersurfaces for all
d =2 mod 8 (second difference with cubic fourfolds).
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d =2 mod 8 (second difference with cubic fourfolds).

We say X has discriminant d if p(X) € Dy.
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Stacks of Hodge-special GM fourfolds

Summary

Periods of Hodge-special GM fourfolds are contained in the union
of

@ irreducible hypersurfaces Dy C D for all d =0 mod 4,

o the unions Dy := D!, U D} of irreducible hypersurfaces for all
d =2 mod 8 (second difference with cubic fourfolds).

We say X has discriminant d if p(X) € Dy.

Theorem (Debarre, lliev, Manivel)
Dy, N Im(p) for d > 8.
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Stacks of Hodge-special GM fourfolds

Summary

Periods of Hodge-special GM fourfolds are contained in the union
of

@ irreducible hypersurfaces Dy C D for all d =0 mod 4,

o the unions Dy := D!, U D} of irreducible hypersurfaces for all
d =2 mod 8 (second difference with cubic fourfolds).

We say X has discriminant d if p(X) € Dy.

Theorem (Debarre, lliev, Manivel)
Dy, N Im(p) for d > 8.

The moduli stack of GM fourfolds of discriminant d is

M4 XD Dd.
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Associated K3 surface

Definition (Debarre, lliev, Manivel)

X € My xp Dy has a Hodge-associated degree-d polarized K3
surface (S, /) if there is a Hodge isometry L 22 H2(S, Z)prim(—1).

< d=2,4 mod 8 and p1{d for every prime p =3 mod 4. (xx)
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Associated K3 surface

Definition (Debarre, lliev, Manivel)

X € My xp Dy has a Hodge-associated degree-d polarized K3
surface (S, /) if there is a Hodge isometry L 22 H2(S, Z)prim(—1).

< d=2,4 mod 8 and p1{d for every prime p =3 mod 4. (xx)

Conjecture (Players of GM fourfolds)
X is rational if and only if X € Ma xp Dy for d satisfying (*x).
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Associated K3 surface

Definition (Debarre, lliev, Manivel)

X € My xp Dy has a Hodge-associated degree-d polarized K3
surface (S, /) if there is a Hodge isometry L 22 H2(S, Z)prim(—1).

< d=2,4 mod 8 and p1{d for every prime p =3 mod 4. (xx)

Conjecture (Players of GM fourfolds)
X is rational if and only if X € Ma xp Dy for d satisfying (*x).

Known examples of rational GM fourfolds are in
o My xp Djy My xp Dy, (Debarre, lliev, Manivel);
e My xp Dy (Hoff, Stagliano in 2019);
e My xp Dy (Stagliand in 2020).
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Relation on the stack level

If d satisfies (),
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Relation on the stack level

If d satisfies (),
Question: what happens on the level of quotient domains and
stacks?

o H%(S,Z)p = Eg(—1)%2 @ U2 @ h(—d) =: Ag;
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Relation on the stack level

If d satisfies (),
Question: what happens on the level of quotient domains and
stacks?

o H%(S,Z)p = Eg(—1)%2 @ U2 @ h(—d) =: Ag;

° Q(/\d)/a(/\d) is the moduli space of quasi-polarized degree-d
K3 surfaces.
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Relation on the stack level

If d satisfies (),
Question: what happens on the level of quotient domains and
stacks?

o H%(S,Z)p = Eg(—1)%2 @ U2 @ h(—d) =: Ag;

° Q(/\d)/a(/\d) is the moduli space of quasi-polarized degree-d
K3 surfaces.

Question: Dy versus Q(Ag)/O(Ag)?
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Relation on the stack level

If d satisfies (),
Question: what happens on the level of quotient domains and
stacks?

o H%(S,Z)p = Eg(—1)%2 @ U2 @ h(—d) =: Ag;

° Q(/\d)/a(/\d) is the moduli space of quasi-polarized degree-d
K3 surfaces.

Question: Dy versus Q(Ag)/O(Ag)?

d satisfies (x*) < L = Ag(—1); in this case (~)(L§) =~ O(Ag(—1)).
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Relation on the stack level

If d satisfies (),
Question: what happens on the level of quotient domains and
stacks?

o H%(S,Z)p = Eg(—1)%2 @ U2 @ h(—d) =: Ag;

° Q(/\d)/é(/\d) is the moduli space of quasi-polarized degree-d
K3 surfaces.

Question: Dy versus Q(Ag)/O(Ag)?
d satisfies (x*) < L = Ag(—1); in this case (~)(L§) =~ O(Ag(—1)).
Tool: notions of marked and labelled GM fourfolds.

Introduced by Hassett for cubic fourfolds.
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Marked and labelled GM fourfolds (a la Hassett)

Definition

A marked GM fourfold is a Hodge-special GM fourfold X together
with a primitive embedding ¢: Ly < H??(X,Z) preserving the
classes A\; and \y. A labelled GM fourfold is a Hodge-special GM
fourfold X together with a primitive sublattice Ly C H>?(X, Z).

Laura Pertusi Marked and labelled Gushel-Mukai fourfolds 13 /20



Marked and labelled GM fourfolds (a la Hassett)

Definition

A marked GM fourfold is a Hodge-special GM fourfold X together
with a primitive embedding ¢: Ly < H??(X,Z) preserving the
classes A\; and \y. A labelled GM fourfold is a Hodge-special GM
fourfold X together with a primitive sublattice Ly C H>?(X, Z).

Remark: Note that

{ marked GM 4-folds }/~ — { labelled GM 4-folds }/~

(X, @: Lg = H*2(X,Z)) — (X, p(Lg) C H>?(X,Z)) is surjective,
but need not to be injective.
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Marked and labelled GM fourfolds (a la Hassett)

Definition

A marked GM fourfold is a Hodge-special GM fourfold X together
with a primitive embedding ¢: Ly < H??(X,Z) preserving the
classes A\; and \y. A labelled GM fourfold is a Hodge-special GM
fourfold X together with a primitive sublattice Ly C H>?(X, Z).

Remark: Note that

{ marked GM 4-folds }/~ — { labelled GM 4-folds }/~

(X, @: Lg = H*2(X,Z)) — (X, p(Lg) C H>?(X,Z)) is surjective,
but need not to be injective.

Remember: O(Ago) = {g € O(A) : gl(a,\,) = id} =: T, so define
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Marked and labelled GM fourfolds (a la Hassett)

Definition

A marked GM fourfold is a Hodge-special GM fourfold X together
with a primitive embedding ¢: Ly < H??(X,Z) preserving the
classes A\; and \y. A labelled GM fourfold is a Hodge-special GM
fourfold X together with a primitive sublattice Ly C H>?(X, Z).

Remark: Note that

{ marked GM 4-folds }/~ — { labelled GM 4-folds }/~

(X, @: Lg = H*2(X,Z)) — (X, p(Lg) C H>?(X,Z)) is surjective,

but need not to be injective.

Remember: O(Ago) = {g € O(A) : gl(a,\,) = id} =: T, so define
G(Lg) :={g €T :g(La) = La},
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Marked and labelled GM fourfolds (a la Hassett)

Definition

A marked GM fourfold is a Hodge-special GM fourfold X together
with a primitive embedding ¢: Ly < H??(X,Z) preserving the
classes A\; and \y. A labelled GM fourfold is a Hodge-special GM
fourfold X together with a primitive sublattice Ly C H>?(X, Z).

Remark: Note that
{ marked GM 4-folds }/~ — { labelled GM 4-folds }/~
(X, @: Lg = H*2(X,Z)) — (X, p(Lg) C H>?(X,Z)) is surjective,
but need not to be injective.
Remember: O(Ago) = {g € O(A) : gl(a,\,) = id} =: T, so define
G(Lg) :={g €T :g(La) = La}, N
H(La) = {g € G(La) : glu, = idi,} = O(LY)
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Marked and labelled GM fourfolds (a la Hassett)

Definition

A marked GM fourfold is a Hodge-special GM fourfold X together
with a primitive embedding ¢: Ly < H??(X,Z) preserving the
classes A1 and X,. A labelled GM fourfold is a Hodge-special GM
fourfold X together with a primitive sublattice Ly C H>?(X, Z).

Remark: Note that
{ marked GM 4-folds }/~ — { labelled GM 4-folds }/~
(X, @: Lg = H*2(X,Z)) — (X, p(Lg) C H>?(X,Z)) is surjective,
but need not to be injective.
Remember: O(Ago) = {g € O(A) : gl(a,\,) = id} =: T, so define
G(Lg) :={g €T :g(La) = La}, N
H(La) = {g € G(La) : glu, = idi,} = O(LY)

DI = Q(Ly)/H(Lg), DP®:=Q(Ly)/G(Lq).

Laura Pertusi Marked and labelled Gushel-Mukai fourfolds 13 /20



Stacks of marked and labelled GM fourfolds

Remark = D — D'Lab
d d
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Stacks of marked and labelled GM fourfolds

Remark = D — D'Lab
d d
e = lab, mar

;::Dzd if d =0 mod 4.
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Stacks of marked and labelled GM fourfolds

Remark = D — D'Lab
d d
e = lab, mar

Df = Dzd if d =0 mod 4.

When d = 2 mod 8, we have two embeddings D, =N D!, C D and
Dy, = D! C D; let (D})* and (D})* be the corresponding spaces
D, over Dy and Dy, respectively.

DY = (D,)* 11(DY)* if d =2 mod 8.
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Stacks of marked and labelled GM fourfolds

Remark = D — D'Lab
d d
e = lab, mar

Df = Dzd if d =0 mod 4.

When d = 2 mod 8, we have two embeddings D, =N D!, C D and
Dy, = D! C D; let (D})* and (D})* be the corresponding spaces
D, over Dy and Dy, respectively.

DY = (D,)* 11(DY)* if d =2 mod 8.
Definition

The moduli stacks of marked and labelled GM fourfolds of
discriminant d are My xp D" and My xp D:jb.
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Stacks of marked and labelled GM fourfolds

Remark = D — D'Lab
d d
e = lab, mar

Df = Dzd if d =0 mod 4.

When d = 2 mod 8, we have two embeddings D, =N D!, C D and
Dy, = D! C D; let (D})* and (D})* be the corresponding spaces
D, over Dy and Dy, respectively.

DY = (D,)* 11(DY)* if d =2 mod 8.

Definition
The moduli stacks of marked and labelled GM fourfolds of
discriminant d are My xp D" and My xp D'jb.

D" — DP® - Dy, C D.
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Main results

Theorem (Brakkee, P.)

The map Drer — D'fdb is an isomorphism.
As a consequence, My xXp D7 = My Xp D'j'b.
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Main results

Theorem (Brakkee, P.)
The map Drer — D'fdb is an isomorphism.

As a consequence, My xp D" = My xp D'j'b.

Corollary

For every d satisfying (xx), there is a rational map
Yd - ./\/l4 XD Dd i 4 Q(/\d)/O(/\d)
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Main results

Theorem (Brakkee, P.)

The map Drer — D'fdb is an isomorphism.
As a consequence, My xp D" = My xp D'j'b.

Corollary
For every d satisfying (xx), there is a rational map
Yd : Ma Xp Dg --+ Q(Ag)/O(Ag).
Indeed,
Q(Ag(-1)) Q(LF)—— Q(Aoo)

| | |

Q(Ag(~1))/O(Aa(~1)) — Q(LY)/H(Ly) 2 D> — Dy, D

IR
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Comments

o Dy --» Q(Ag)/O(Ag) is birational for d =0 mod 4,
generically two-to-one if d =2 mod 8.
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Comments

o Dy --» Q(Ag)/O(Ag) is birational for d =0 mod 4,
generically two-to-one if d =2 mod 8.

@ 74 is not unique;
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Comments

o Dy --» Q(Ag)/O(Ag) is birational for d =0 mod 4,
generically two-to-one if d =2 mod 8.
@ 74 is not unique;

@ Analogous statement for GM fourfolds having an associated
twisted K3 surface:

o X has associated twisted K3 surface
& d' =1TJ,; p/" with nj =0 mod 2 for p; = 3 mod 4 (P.);
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Comments

o Dy --» Q(Ag)/O(Ag) is birational for d =0 mod 4,
generically two-to-one if d =2 mod 8.
@ 74 is not unique;

@ Analogous statement for GM fourfolds having an associated
twisted K3 surface:
e X has associated twisted K3 surface
& d' =1TJ,; p/" with nj =0 mod 2 for p; = 3 mod 4 (P.);
o use moduli spaces of polarized twisted K3 surfaces with fixed
degree and order (Brakkee).
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Comments

o Dy --» Q(Ag)/O(Ag) is birational for d =0 mod 4,
generically two-to-one if d =2 mod 8.
@ 74 is not unique;

@ Analogous statement for GM fourfolds having an associated
twisted K3 surface:

o X has associated twisted K3 surface
& d' =1TJ,; p/" with nj =0 mod 2 for p; = 3 mod 4 (P.);

o use moduli spaces of polarized twisted K3 surfaces with fixed
degree and order (Brakkee).

@ Third difference with cubic fourfolds:
o D™ — DPP is isomorphism or two-to-one cover (Hassett).
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Comments

o Dy --» Q(Ag)/O(Ag) is birational for d =0 mod 4,
generically two-to-one if d =2 mod 8.

@ 74 is not unique;

@ Analogous statement for GM fourfolds having an associated
twisted K3 surface:

o X has associated twisted K3 surface
& d' =1TJ,; p/" with nj =0 mod 2 for p; = 3 mod 4 (P.);

o use moduli spaces of polarized twisted K3 surfaces with fixed
degree and order (Brakkee).

@ Third difference with cubic fourfolds:

o D™ — DPP is isomorphism or two-to-one cover (Hassett).
o In the second case, there are “two” K3 surfaces, one is a
moduli space of stable sheaves on the other (Brakkee).
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Derived category of GM fourfolds

Proposition (Kuznetsov, Perry)

DP(X) = (Ku(X), Ox, U, Ox(1), Ux (1))
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Derived category of GM fourfolds

Proposition (Kuznetsov, Perry)
D°(X) = (Ku(X), Ox, Uy, Ox(1),Ux (1))
The Kuznetsov component of X is

Ku(X) := {E € D*(X) : Hompsx (Ox(i), E) = 0,
Homps(x) (Ux (i), E) = 0 for all i = 0,1}
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Derived category of GM fourfolds

Proposition (Kuznetsov, Perry)
D(X) = (Ku(X), Ox, Uk, Ox (1), Us (1))
The Kuznetsov component of X is
Ku(X) := {E € D*(X) : Hompsx (Ox(i), E) = 0,
Home(X)(Z/l)*((i), E)=0forall i =0,1}.

Key property:
Ku(X) is a subcategory of K3 type: it has the same Serre functor
and same Hochschild homology of D?(S), where S is a K3 surface.
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Derived category of GM fourfolds

Proposition (Kuznetsov, Perry)
D(X) = (Ku(X), Ox, Uz, Ox (1), Ux (1))

The Kuznetsov component of X is

Ku(X) := {E € D*(X) : Hompsx (Ox(i), E) = 0,
Homps(x) (Ux (i), E) = 0 for all i = 0,1}
Key property:

Ku(X) is a subcategory of K3 type: it has the same Serre functor
and same Hochschild homology of D?(S), where S is a K3 surface.

Definition
X has a homological associated K3 surface if Ku(X) ~ D?(S) for a
K3 surface S.
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Application to FM partners

Definition
A GM fourfold X’ is a Fourier—Mukai partner of X if there exists an
exact equivalence Ku(X) ~ Ku(X’) of Fourier—Mukai type.
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Application to FM partners

Definition
A GM fourfold X’ is a Fourier—Mukai partner of X if there exists an
exact equivalence Ku(X) ~ Ku(X’) of Fourier—Mukai type.

Kuznetsov, Perry

Non-isomorphic GM fourfolds in the same fiber of the period map
are FM partners. So Categorical Torelli Theorem does not hold for
GM fourfolds.
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Application to FM partners

Definition
A GM fourfold X’ is a Fourier—Mukai partner of X if there exists an
exact equivalence Ku(X) ~ Ku(X’) of Fourier—Mukai type.

Kuznetsov, Perry

Non-isomorphic GM fourfolds in the same fiber of the period map
are FM partners. So Categorical Torelli Theorem does not hold for
GM fourfolds.

Theorem (Brakkee, P.)

Let X be very general in My xp Dy with d satisfying (xx). Let
7(d) be the number of distinct primes that divide d/2.Then when
d =4 mod 8 (resp. d =2 mod 8), there are 27()=1 (resp. 27(9))
fibers of the period map such that, when non-empty, their elements
are FM partners of X. Moreover, all FM partners of X are obtained
in this way.
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Comments

@ Analogous result for cubic fourfolds (P. and Fan, Lai 2020).
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Comments

@ Analogous result for cubic fourfolds (P. and Fan, Lai 2020).

@ We prove a similar statement in the case of associated twisted
K3 surface.
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Comments

@ Analogous result for cubic fourfolds (P. and Fan, Lai 2020).

@ We prove a similar statement in the case of associated twisted
K3 surface.

For the proof we use:
e the rational map v : My xp Dy --» Q(Ag)/O(Ag);
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Comments

@ Analogous result for cubic fourfolds (P. and Fan, Lai 2020).

@ We prove a similar statement in the case of associated twisted
K3 surface.

For the proof we use:

e the rational map v : My xp Dy --» Q(Ag)/O(Ag);

e if X very general in My xp Dy, then X has Hodge associated

K3 surface if and only if X has homological associated K3
surface (Perry, P., Zhao).
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Comments

@ Analogous result for cubic fourfolds (P. and Fan, Lai 2020).
@ We prove a similar statement in the case of associated twisted
K3 surface.
For the proof we use:
e the rational map v : My xp Dy --» Q(Ag)/O(Ag);
e if X very general in My xp Dy, then X has Hodge associated

K3 surface if and only if X has homological associated K3
surface (Perry, P., Zhao).

Fourth difference with cubic fourfolds, where these notions are
equivalent (Addington, Thomas and Bayer, Lahoz, Macri, Nuer,
Perry, Stellari).
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Comments

@ Analogous result for cubic fourfolds (P. and Fan, Lai 2020).

@ We prove a similar statement in the case of associated twisted
K3 surface.

For the proof we use:

e the rational map v : My xp Dy --» Q(Ag)/O(Ag);

e if X very general in My xp Dy, then X has Hodge associated
K3 surface if and only if X has homological associated K3
surface (Perry, P., Zhao).

Fourth difference with cubic fourfolds, where these notions are
equivalent (Addington, Thomas and Bayer, Lahoz, Macri, Nuer,
Perry, Stellari).

If X has a Hodge-associated K3 surfaces, then X has a homological
associated K3 surface, but there are counterexamples to the inverse
statement (P. + Perry, P., Zhao).
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Coda on open questions

Conjecture (Debarre, lliev, Manivel)

/m(p) =D \ (Dg UDyU Dg)?
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Coda on open questions

Conjecture (Debarre, lliev, Manivel)

/m(p) =D \ (Dg UDyU Dg)?

@ For cubic fourfolds Im(p) = D\ (D2 U Ds) (Laza, Looijenga).
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Coda on open questions

Conjecture (Debarre, lliev, Manivel)

/m(p) =D \ (Dg UDyU Dg)?

@ For cubic fourfolds Im(p) = D\ (D2 U Ds) (Laza, Looijenga).

@ Suggestion of Macri: try to use stability conditions, recovering
the GM fourfold inside a moduli space of Bridgeland stable
objects in Ku(X).
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